The time that really matters

TL;DR: write apps that start from the command line within one second.

One of the core principles of Lean is waste reduction. There are many kinds of waste: for instance, overproduction means to write software that is not needed, or that is “gold-plated”, that is, done to a level of completeness that exceed the customer’s needs.

Here I would like to talk about another kind of waste: waiting.

Picture this: you are a programmer. You arrived at work this morning. You attended the stand-up meeting. You attended an ad-hoc technical meeting. You had a coffee break with your collegues. You pick up a user story from the card wall and you discuss its details with the product owner. You finally sit down in front of the keyboard, pairing with a fellow programmer. Now your core time starts: the time when you program; the time when are really doing value-adding work. You start by checking the screen of the application where you will have to add functionality: so you start the application…. and wait. And wait. And wait.

Your application may be able to run thousands of transactions per second, yet it takes minutes to boot.

The time that your application takes to boot is a tax that you keep paying, tens or hundreds of times per day. This waiting time cuts into your best time: the time when you are in front of the keyboard, well-rested, ready to do your best work. This tax is being paid by all the programmers in the team, by all the testers and by all those who need to redeploy the application.

I hear you saying: “But, but, but… I do TDD! I don’t need to boot my app that often!”. OK, it’s very good that you do TDD. If you do it well, which means that you will mostly do microtests instead of integrated tests, then you will not have to reboot your application all the time. And yet… there are times when we really need to reboot the app. We will have to write at least some integrated tests. Sometimes we will have to debug. Sometimes we will have to test the thing manually. Sometimes we are tweaking the UI, and it makes little sense to write tests for that. Sometimes, despite our best intentions, we don’t find a way to do TDD well. For all of these reasons, it really pays to have an application that can be started within one second.

My favourite way to implement a web application in Java is to use an embedded Jetty server. This is a technique that I’ve been teaching for years. You may see an example in the github repository for my Simple Design workshop. Running the program is simply a matter of executing

./gradlew compileJava && script/run.sh

which takes about a second. If you run it from Eclipse in debug mode, it reloads automatically any change you make.

Compare this to a program written with Spring Boot. Let’s consider the Getting Started example application. You compile and run it with

./gradlew build && java -jar build/libs/gs-spring-boot-0.1.0.jar

and it will run in 6.8 seconds (measured by hand with a stopwatch on my 8-cores Mid-2015 MacBook Pro). This is significantly worse than 1 second, but still tolerable. The problem is that by design, Spring looks for components in its classpath. This autoconfiguration takes an increasing amount of time as the application grows in size. Real-world services written with Spring boot take 20-30 seconds to boot. That’s definitely too much in my view… expecially when it’s easy to stay under one second.

That’s whay I don’t like to autoconfigure stuff: I just configure your components explicitly in my main partition.

Protect your core time: make it so that your app can be restarted within one second. That’s a real productivity gain for the whole team.

References

Uncle Bob blogged about this very subject in The Mode B imperative

Greg Young describes how and why to configure components explicitly in his talk 8 Lines of Code

Leave a Reply