

Università degli Studi di Milano

Dipartimento di Informatica

Dottorato di Ricerca in Informatica

Ph.D. Thesis

Calculational Derivation of Circuits

Matteo Vaccari

Advisors:
Prof. Roland Backhouse
Prof. Pierangelo Miglioli

Matteo Vaccari

Dipartimento di Scienze dell’Informazione

Università degli Studi di Milano

via Comelico 39, 20135 Milano–Italy

vaccari@dsi.unimi.it

http://eolo.usr.dsi.unimi.it/~matteo

Last Revision: January 19, 2015: recompiled with a modern distribution
of TEX so that the resulting pdf is searchable

3

Abstract

This work is about the calculational construction of circuits. By “construc-
tion” we mean obtaining a design by means of formal manipulation of a for-
mal specification. “Calculational” refers to the style which we employ, that
is to try to reduce all program derivations to straightforward calculation.

In other words, in this thesis we aim to develop a style of calculus that aids
the designer in the derivation (and the presentation) of circuits.

We start from an established notation called Ruby, developed by Sheeran
and Jones, based on the algebra of binary relations. We then develop our
own style of Ruby, through a number of derivation case studies.

The main results in this thesis concerns the derivation of regular language
recognizing circuits. We show how an existing design, due to Foster and
Kung can be derived and explained; we point out a limitation in Foster and
Kung’s design and show how it can be partially overcome.

Other case studies we present are a new derivation of a circuit that solves
the carré problem, and a derivation of a round-robin scheduler.

We then show how our designs can be implemented in practice. First we
show how to simulate the circuits using Hutton’s Ruby simulator; then we
go all the way to implement a compiler from Ruby circuits to a CSP-like
notation called Tangram.

Additional tool support is provided by proof checkers. Even though our
method is supposed to be mainly used with pencil and paper, it is possible
and sometimes useful to check the proofs by machine. We use PVS to verify
part of our theory and one of the case studies.

Sommario

Questo lavoro tratta della costruzione per mezzo di calcolo di circuiti. Per
“costruzione” intendiamo ottenere un circuito per mezzo di manipolazioni
formali di una specifica formale. “Per mezzo di calcolo” si riferisce allo
stile che usiamo, che consiste nel cercare di ridurre tutte le derivazione di
programmi a calcolo.

In altre parole, in questa tesi si aspira a sviluppare uno stile di calcolo che
aiuti il progettista nella derivazione (e l’esposizione) di circuiti.

Il punto di partenza è un calcolo preesistente chiamato Ruby, sviluppa-
to da Sheeran e Jones, basato sull’algebra delle relazioni binarie. Di qui
sviluppiamo il nostro stile di Ruby, attraverso una serie di derivazioni.

4

I risultati principali in questa tesi riguardano la derivazione di circuiti che
riconoscono linguaggi regolari. Mostriamo come una classe di circuiti proget-
tati da Foster e Kung possano essere derivati e spiegati; sottolineiamo una
limitazione di questi circuiti e mostriamo come si possa superarla, almeno in
parte.

Altri casi sviluppati sono una nuova derivazione di un circuito che risolve il
problema del carré, e un algoritmo di mutua esclusione.

Mostriamo poi come i nostri circuiti possano essere praticamente realizzati.
Prima mostriamo come simularli per mezzo dell’interprete Ruby di Hutton;
quindi produciamo un compilatore che traduce circuiti Ruby in una notazione
simile a CSP chiamata Tangram.

I programmi che verificano dimostrazioni possono essere utili strumenti di
supporto alla derivazione. Anche se il nostro metodo è pensato per essere
usato con carta e matita, è possibile e a volte utile verificare le dimostrazioni
meccanicamente. Usiamo il sistema PVS per verificate parte della nostra
teoria, e di una derivazione.

Contents

0 Introduction 9

0.0 The calculational method and Ruby 10

0.1 Foster and Kung’s recognizers 11

0.2 Implementations . 12

0.3 Machine checked proofs . 12

0.4 Outline . 13

1 The calculational style 15

1.0 Proof format . 16

1.1 An example proof about max 16

1.2 The fixed point calculus . 18

2 On the relation calculus 21

2.0 Basic definitions and properties 21

2.1 Pairs and product . 23

2.2 An example: bisimulations . 25

3 About circuits 29

3.0 Circuits and lifted relations 30

3.1 Delays and stream identity . 31

3.2 Other circuit primitives . 32

3.3 Summary of circuits . 34

3.3.0 On combinational paths and systolic circuits 34

3.4 Wiring relations . 36

5

6 Contents

3.4.0 Zips . 36

3.4.1 Left and right shifts 39

3.5 Circuit transformations . 39

3.5.0 Retiming . 39

3.5.1 Slowdown . 41

3.5.2 Pipelining . 45

3.6 Realizability . 45

4 Tuples and generalised products 47

4.0 Maps . 48

4.1 Folds . 50

4.2 Forks . 51

4.3 Triangles . 51

4.4 Zips . 52

4.5 Bundles . 54

4.6 Rotations . 56

4.7 Cyclic multiplexers . 57

5 The carré problem 59

5.0 Conclusions . 63

6 A round-robin scheduler 65

6.0 Introduction . 65

6.1 The specification . 65

6.2 Design Steps . 67

6.3 Low Level Specification . 69

6.3.0 Bit Representation . 69

6.3.1 Implementing The Filter Component 71

6.4 Efficiency Analysis and the Goal 72

6.5 Simplifying the Goal . 72

6.6 Construction of the flip-flops 76

6.7 Conclusions . 78

Contents 7

7 Regular language recognizers 81

7.0 The specification . 82

7.0.0 Proof of the properties of mem 84

7.1 A non-systolic recognizer . 86

7.2 Making the design systolic . 90

7.3 A choice-privileged design . 95

7.4 Some considerations . 105

8 Simulation with the Ruby interpreter 107

8.0 Introduction to the interpreter 108

8.0.0 The language . 108

8.0.1 Using the interpreter 109

8.1 Preliminaries . 109

8.2 The τ design . 110

8.3 The ρ design . 115

8.4 The η design . 118

8.5 Conclusions . 123

9 A Tangram implementation 125

9.0 Tangram . 127

9.1 The compiler in detail . 129

9.1.0 Type declarations . 129

9.1.1 The main program . 131

9.1.2 From Ruby to networks 132

9.1.3 Syntactic sugar . 135

9.1.4 Assigning type information 135

9.1.5 Code generation . 137

9.2 Regular language recognizers 140

9.2.0 The τ design . 140

9.2.1 The ρ design . 143

9.2.2 The η design . 146

8 Contents

10 A machine-checked derivation 149

10.0 The theories . 151

10.0.0 The theory of relations 151

10.0.1 The theory of circuits 154

10.0.2 The theory of tuples 156

10.0.3 The theory of zipn . 159

10.0.4 The theory of carré . 161

10.1 Proofs . 163

10.2 The carre proof . 168

10.3 Conclusions . 178

11 Conclusions and discussion 185

A Proofs of the delay and retiming laws 189

B Facts about bundle and slow 195

Bibliography 205

Index 209

Chapter 0

Introduction

Very few tastes are universal. A taste for programs that can
visibly be seen to be correct is certainly not one of them. A great
deal of programmers are very bad at what they do. We cannot

measure the usefulness of a technique by counting noses.
Richard O’Keefe <5kph1v$74l$1@goanna.cs.rmit.edu.au>

This work is about the calculational construction of circuits. By “construc-
tion” we mean obtaining a design by means of formal manipulation of a for-
mal specification. “Calculational” refers to the style which we employ, that
is to try to reduce all program derivations to straightforward calculation.

In other words, in this thesis we aim to develop a style of calculus that aids
the designer in the derivation (and the presentation) of circuits.

The ultimate goal of this research is to give the individual programmer, or
circuit designer, a calculus that allows the derivation of programs and circuits
that are better understood, better documented, and behave as expected.
We stress individual in the above sentence, since the techniques presented
here make sense for the individual even if they are not part of the design
methodology embraced by the organization the individual works in.

We start from an established notation called Ruby, developed by Sheeran and
Jones [25]. Ruby is a language based on (point-free) the algebra of binary
relations. We then develop our own style of Ruby, through a number of
derivation case studies. We find that a judicious mixture of pointwise and
point-free reasoning is needed to attain a concise exposition.

The main results in this thesis concerns the derivation of regular language
recognizing circuits. We show how an existing design, due to Foster and

9

10 Chapter 0. Introduction

Kung [18] can be derived and explained; we point out a limitation in Foster
and Kung’s design and show how it can be partially overcome.

Other case studies we present are a new derivation of a circuit that solves the
carré problem, which is presented and solved by Rem in [45], and a deriva-
tion of a round-robin scheduler, from a specification found in a collection of
benchmark circuits for verification by Kropf [29].

We then show how our designs can be implemented in practice. First we
show how to simulate the circuits using Hutton’s Ruby simulator [23]; then
we go all the way to implement a compiler from Ruby circuits to a CSP-like
notation called Tangram, developed by Van Berkel [51]. Finally we test our
generated circuits with the Tangram simulator.

Additional tool support is provided by proof checkers. Even though our
method is supposed to be mainly used with pencil and paper, it is possible
and sometimes useful to check the proofs by machine. We use PVS [40] (a
proof checker developed at SRI) to verify part of our theory and one of the
case studies.

In the remainder of this chapter we have a short introduction to the calcula-
tional method and Ruby, followed by a brief summary of the thesis’ contents.

0.0 The calculational method and Ruby

The calculational method strives to combine concision with precision. Ul-
timately we hope to be able to derive a program as a solution of a formal
specification, much in the way the integral calculus is used in deriving a
solution to an integral.

The relevance of mathematical logic to programming was made prominent
by Hoare with the invention of (what is now called) Hoare logic. However,
his work was aimed at verifying that a program satisfies a specification,
rather than deriving a program that satisfies a given specification. An im-
portant step forward came with the calculus of weakest preconditions, by
Dijkstra [11]; this enabled the programmer to derive a program from a goal
assertion that must be established. To this day, this is the most effective way
of deriving imperative programs operating on arrays.

A second step forward was the style of constructive functional programming
introduced by Bird and Meertens [6], and known as the Bird/Meertens for-
malism. This allows one to derive functional programs operating on lists.

0.1. Foster and Kung’s recognizers 11

A third step forward was the generalisation of Bird/Meertens calculus to
arbitrary (tree-like) datatypes, by Malcolm [36]. This opened the way to
programs that are parameterised by type constructors (so-called polytypic
programs) rather than simply parameterised by types.

The fourth step was the extension of the Bird/Meertens formalism to re-
lations rather than simply functions. The application of (binary) relation
algebra to computing is the subject of the work of a number of researchers
worldwide [9]. Bird and De Moor derive dynamic programming algorithms
in a relational style [7]; the Mathematics of Program Construction group
in Eindhoven extended polytypic programming to relations [0]; and Sheeran
and Jones invented Ruby, a relational language of circuits [25].

In this thesis we combine techniques from all of these developments, but the
work on Ruby is closest to our goals.

In Ruby a circuit is a (binary) relation between streams, a stream being
a function from time (i.e., the integers) to some value domain (e.g., the
booleans). A simple example of Ruby circuit is the and gate that relates the
stream of pairs {(at, bt)}t∈Z with the stream {at ∧ bt}t∈Z.

Circuits can be composed with a number of combinators such as relational
composition (R ◦ S) and relational product (R× S). The combinators enjoy
a number of useful rules, like the so-called fusion rule:

(R ◦ S)× (T ◦ U) = (R× T) ◦ (S × U)

Ruby circuits have an interpretation as pictures, which is useful for the pre-
sentation of circuit design, as well as for the illustration of Ruby laws. For
instance, both sides of the fusion rule have the same picture interpretation:

T U

R S

0.1 Foster and Kung’s recognizers

In 1982, Foster and Kung presented a specialised silicon compiler (i.e., a
program that produces the description of a circuit from a specification of the
circuit’s behaviour) that constructs recognizers for regular languages [18].
The compiler was presented without formal justification; indeed, they did
not even present a formal specification of the functionality of the compiler.

12 Chapter 0. Introduction

Their informal description of the functioning left much room for alternative
interpretations.

In this thesis we present a formal derivation of Foster and Kung’s compiler.
The complexity of the task is overcome in two ways: by exploiting (point-free)
relation algebra rather than elementary predicate calculus, and by a judicious
decomposition of the design task. Our design consists of first deriving a non-
systolic implementation, which is essentially a functional program, followed
by a transformation of this design into two different systolic versions, using
standard techniques of “slowdown”, “retiming” and “pipelining” [25].

The technique used in specifying the problem involves mapping the problem
from streams to sets, in a way that is novel in Ruby literature. Part of this
work was published in the proceedings of an international conference [50].

The goal of Foster and Kung’s work was to obtain recognizers that are fully
systolic; i.e., circuits such that no long propagation path exists. Their design
fell short of this goal, since circuits corresponding to regular expressions
where the “choice” operator occurs many times can have long propagation
paths. We present an alternative to Foster and Kung’s design that partially
overcomes this problem, by using the standard technique of “pipelining”.

0.2 Implementations

The designs we obtain are detailed enough to be implemented. We demon-
strate this first by showing how to simulate our circuits by means of Hut-
ton’s Ruby interpreter [23]. Subsequently, we present a compiler from Ruby
circuits to Tangram. Tangram is a CSP-like [21] imperative programming
language developed by Van Berkel [51]. Tangram programs can be compiled
to asynchronous circuits in silicon. We present the result of simulating our
circuits using the Tangram simulator.

These implementations contain no new technical detail; the purpose is to
demonstrate that the designs are in fact implementable, and to show how it
would be possible to obtain working circuits in practice.

0.3 Machine checked proofs

The derivations we present are meant to be done with paper and pencil;
in fact, care has been taken to keep calculations as short and as simple as
possible. The goal of this research is to develop a viable calculus.

0.4. Outline 13

However, converting a paper-and-pencil proof to a format that can be proved
by machine is a valuable learning experience. The proof checker forces one to
be explicit about every minute detail, and uncovers every unstated assump-
tion. The specification language afforded by the proof checker cannot be
as flexible as paper-and-pencil mathematics, and this sometimes forces one
to find alternative, more elementary definitions; which is also useful since it
makes one think of a subject from different points of view.

The proof checker we use here is the Prototype Verification System (PVS),
developed by Owre, Rushby, Shankar and others at Stanford Research Insti-
tute [40]. The main advantage of this program with respect to others such
as Isabelle [42], HOL [10] or NQTHM [8] is the ease of use and the powerful
proof language. What we have done is to formalise and prove a part of the
Ruby theory in PVS, and then check part of the carré case study of chapter 5.

0.4 Outline

Chapter 1 gives an introduction to the mathematical style and notation we
employ. Chapter 2 introduces the algebra of binary relations. Chapter 3
shows how binary relations can be used to reason about circuits, and intro-
duces our variant of Ruby. Chapter 4 continues the exposition of Ruby by
generalising pairs to n-tuples. Chapter 5 presents the first case study, the
Carré problem. Chapter 6 contains the second case study, the round-robin
scheduler. Chapter 7 is about the third case study, the regular language
recognizers. Chapter 8 shows how to execute the recognizers with the Ruby
interpreter. In chapter 9 a compiler from Ruby to Tangram is presented,
and its use is demonstrated on the regular language recognizers. Chapter 10
contains an encoding of Ruby and the Carré case study in PVS. Finally,
chapter 11 discusses the work presented in this thesis and provides some
conclusions.

Acknowledgements

I must be ever so grateful to Roland Backhouse for accepting me as a
“telecommuting” student, and to his family for accepting me in their house.
I thank Giovanni Degli Antoni for accepting me in his laboratory, and or-
ganizing the seminar which got me involved in program derivation; thanks
to Degli Antoni and Milano Ricerche for providing funding for travel and
conferences. Thanks to Henk Doornbos and Paul Hoogendijk for help and

14 Chapter 0. Introduction

interesting discussion. Thanks to Oege de Moor for encouraging me. My
thanks to Philips Electronics and Kees van Berkel for allowing me to use the
Tangram tools; thanks to Hans van Gageldonk for instructing me in their use.
Thanks to Graham Hutton for thorough proof-reading and many suggestions
for improvement (although any remaining inaccuracies are solely the fault of
the author). Thanks to Richard Verhoeven for proof-reading. Thanks to all
the friends of the PhD lab in Milano, and especially Marco Benini for sharing
my interests. This work wouldn’t exist without the help and encouragement
from my parents, Francesco and Rosanna. Finally, and most importantly,
thanks to Paola and Anna for putting up with all this all this time.

TEXnical details

This thesis was written on Linux0-powered computers.

Most of the text and the calculations were typeset with Matsad
1, Richard

Verhoeven and Roland Backhouse’s mathematical editor that is particularly
well suited for this kind of presentation.

The remaining text-editing work was done with Gnu Emacs2.

The output of Matsad for this thesis consists of a number of LATEX files.

Circuit pictures were coded in pic, Brian W. Kernighan’s language for type-
setting pictures3, and produced with the Gnu implementation of pic.

0http://www.linux.org
1http://www.win.tue.nl/cs/wp/mathspad/
2http://www.gnu.org
3See Jon Bentley, More Programming Pearls for an introduction; for the manual send an

e-mail message to netlib@research.att.com with a body of ‘send 116 from research/cstr’

Chapter 1

The calculational style

In this chapter we give an introduction to the notational conventions we use,
along with an introduction to the calculational style, with some examples to
show why we find it an effective style of reasoning and exposition.

The calculational style strives to reduce complex proofs to straightforward
calculation. Quoting R. Backhouse [2]:

Whereas Mathematics is principally concerned with amassing a
collection of results, Computing Science is about method: how

to construct programs and systems that are reliable, ergonomic
and efficient. The calculational method is about enhancing the
human being’s innate abilities by reducing as much as possible of
the construction process to elementary syntactic calculation.

A major problem in the derivation of hardware (and software as well) is in
keeping the size of the derivations manageable, while retaining precision:

The calculational method ... aims to combine precision with con-
cision. [2]

Terms representing circuits can easily become very large. While proof-
checking programs like HOL [10] or PVS [40] may help in managing the
complexity, they offer little help in the way of understanding. In order for
human beings to be able to understand derivations we must find ways to keep
the size and complexity under control. Calculational methodists have found
a number of ways to do so. Good introductions to the calculational method
include [0, 1, 2, 12, 13, 53]. Some of the works that advocate the use of cal-
culational techniques in programming are [4, 5, 7, 20, 37]. Graham et al. [19]

15

16 Chapter 1. The calculational style

propose a more calculational approach to mathematics, although the tech-
niques they use are more useful in the analysis rather than the derivation of
algorithms.

In the next section the proof format that we use is explained; then an example
proof in calculational style is shown. Finally, section 1.2 deals with rules for
effective reasoning with fixed points.

1.0 Proof format

We will structure most proofs as a chain of equalities (or inequalities). The
proof that P ≡ Q because P ≡ R and R ≡ Q would be written as

P

≡ { hint why P ≡ R }

R

≡ { hint why R ≡ Q }

Q

(The symbol ≡ stands for logical equivalence, which is just equality on
booleans.) An important variation on this theme is a proof of the form
P ⇒ x = y, that can be written as

x

= { assuming P }

y

This is often used when trying to derive a condition for x = y to hold. This
style of proof presentation is explained in detail in van Gasteren [53].

1.1 An example proof about max

As an example of what a calculational proof is, consider the following: we
wish to prove that multiplication distributes through the maximum of two
numbers: for any a≥ 0,

a·x ↑ a·y = a·(x ↑ y),(.)

1.1. An example proof about max 17

where r ↑ s is the maximum of two numbers r and s. The usual definition
of ↑ is

x ↑ y =

{
x if x≥ y
y if y≥ x.

A problem with this is that it forces you to reason by cases whenever you
want to prove anything that mentions ↑. Consider instead the following
characterization, discussed by Feijen and Bijlsma in [16]:

x ↑ y≤ z ≡ x≤ z ∧ y≤ z.

This equivalence is clearly valid, according to the old definition of ↑. It is
possible to show that there is just one function that satisfies this equation;
hence it may be taken as an alternative definition of ↑, one that is to be
greatly preferred, because it avoids case analysis.

We want to prove (.). For a= 0 it clearly holds, so we only need to prove it
for a > 0. We could do it by showing the two inclusions a·x ↑ a·y ≤ a·(x ↑
y) and a·(x ↑ y) ≤ a·x ↑ a·y; but this would involve two separate argu-
ments. We’d be eliminating a reasoning by cases, only to replace it by a
two-part proof. The challenge is: can we produce a proof in one go?

There is a general law about partial orderings that can help us:

x=y ≡ ∀(z :: x≤ z ≡ y≤ z)

It is sometimes called the law of “indirect equality”. Its usefulness is in
making it easy to apply laws like the ↑ characterization. Returning to our
problem, we calculate as follows: for any z,

a·x ↑ a·y ≤ z

≡ { characterization }

a·x ≤ z ∧ a·y ≤ z

≡ { a is positive }

x≤ z/a ∧ y≤ z/a

≡ { characterization }

x ↑ y ≤ z/a

≡ { a is positive }

a·(x ↑ y) ≤ z.

18 Chapter 1. The calculational style

The hint “a is positive” refers to the use of the equivalence

(a·x≤ y ≡ x≤ y/a) ⇐ a > 0,

which is similar in shape to the ↑ characterization, but is much more widely
known. Note that no real “reasoning” is required by the above proof; it is a
simple calculation. With practice, it requires very little effort. The practical
benefits are great. Proofs that required substantial effort are reduced to
formal manipulation of symbols.

1.2 The fixed point calculus

The Eindhoven Mathematics of Program Construction group has collected a
set of rules that make it easier to calculate with fixed points [39]. We give
here a brief account of the fixpoint rules.

In this section, the letters f ,g,h will stand for monotone functions over a
complete lattice. Recall that a complete lattice is a lattice where meets and
joins of arbitrary sets of elements exist. Let A be a complete lattice, and
≤ be the associated order relation. An element a∈A is said to be a prefix

point of function f iff f.a≤ a . We’ll denote the least prefix point of f by
µf . Hence the following induction rule holds:

µf ≤ a ⇐ f.a≤ a .

An element a is said to be a fixed point of f iff f.a= a. The main tool that
is used in what follows is the Knaster-Tarski theorem:

Theorem . (Knaster-Tarski) if f is a monotone function over a com-
plete lattice, then it has a least fixed point, that coincides with the least of
its prefix points.

✷

This theorem proves the following computation rule:

f.µf = µf .

The rest of the fixed-point calculus rules can be derived from the first two.

1.2. The fixed point calculus 19

Theorem . (rolling rule) µ(f ◦ g) = f.µ(g ◦ f)

✷

Let the pointwise ordering between functions be defined by

f ⊑ g ≡ ∀(x :: f.x≤ g.x) .

We then have the following:

Theorem . (simple µ-fusion) µf ≤ g.µh ⇐ f ◦ g ⊑ g ◦ h

✷

Theorem . (diagonal rule) Let ⊕ be a binary operator that is mono-
tone in both arguments. We then have that

µ(a 7→ a⊕a) = µ(a 7→ µ(b 7→ a⊕b)) .

✷

The last rule below is proved in [39]:

Theorem . (µ-fusion) If f distributes over arbitrary joins, then we
have:

f.µg ≤ µh ⇐ f ◦ g ⊑ h ◦ f .

✷

20 Chapter 1. The calculational style

Chapter 2

On the relation calculus

We will write our specifications and our circuits in point-free relation alge-
bra. A brief introduction to our style of relation algebra follows; for a more
complete treatment see [0].

Conducting calculations in a point-free style is advantageous, because many
properties can be stated in a very concise form; for instance, the property
“R is an injective relation” can be simply stated as R∪

◦ R ⊆ I. However,
not all calculations are possible or convenient to do in a point-free manner.

As we have tried to demonstrate, relation algebra is an excellent
vehicle for concise expression of fundamental notions in comput-
ing. It should not be supposed, however, that it will ever com-
pletely replace the pointwise predicate calculus. A degree of good
taste is essential to deciding where and when point-free reasoning
is to be preferred.

Doornbos, van Gasteren, Backhouse [15]

2.0 Basic definitions and properties

A (binary) relation over a set U is a set of pairs of elements of U. For x,y
in U and R a relation over U, we write x〈R〉y instead of (x, y) ∈ R. When
a relation R satisfies

x〈R〉y ∧ z〈R〉y ⇒ x=z

21

22 Chapter 2. On the relation calculus

we say that the relation is deterministic. The reason for this name is that
we usually interpret relations as programs taking input from the right and
producing output on the left. In this way a deterministic relation is inter-
preted as a program with deterministic behaviour. The reason for the choice
of interpreting the right domain as input, is to follow the convention used
in functional programming, where the term f • g is usually interpreted as
a program that first applies g to the input, and then applies f to the result.
Programming with relations is then an extension of functional programming.

If R is deterministic, then it may be considered as a function with domain on
the right side and range on the left side; we denote by R.y the unique x such
that x〈R〉y holds, if such an x exists. We usually use the letters f , g, h to
stand for deterministic relations. We use the convention that “.” associates
to the right so that f.g.x should be parsed as f.(g.x) . (This is contrary to
the convention used in the lambda calculus.)

Relations are ordered by the usual set inclusion ordering. Hence the set of
relations over a given set U forms a complete lattice. The relation corre-
sponding to the empty set is denoted by ⊥⊥, and the relation that contains
all pairs of elements of U is denoted by ⊤⊤. The identity relation, I, is defined
by

x〈I〉y ≡ x=y.

The composition of two relations R,S is denoted by R ◦ S and defined by

x〈R ◦ S〉y ≡ ∃(z :: x〈R〉z ∧ z〈S〉y).

Composition is associative and has unit element I:

R ◦ I = I ◦ R = R
(R ◦ S) ◦ T = R ◦ (S ◦ T).

Furthermore, composition is monotonic in both arguments:

R ◦ S ⊆ R ◦ T ⇐ S ⊆ T
R ◦ S ⊆ T ◦ S ⇐ R ⊆ T.

Repeated composition of a relation R can be denoted by Rn:

R0 = I
Rn+1 = Rn

◦ R for n ≥ 0.

2.1. Pairs and product 23

The converse of a relation R is written R∪ (pronounced R wok) and is defined
by

x〈R∪〉y ≡ y〈R〉x.

Converse satisfies the properties

R∪∪ = R
(R ◦ S)∪ = S∪

◦ R∪.

A monotype is a relation A such that A ⊆ I. An example of a monotype is
N, defined by

n〈N〉m ≡ n=m ∧ (n is a natural number).

There is a clear one-to-one correspondence between the subsets of U and
the monotypes; and this makes it possible to embed set calculus in relation
calculus. The left domain of relation R, denoted R<, is the least monotype
A such that A ◦ R = R. As its name suggests, R< represents the set of all
x such that x is related by R to some y. The right domain of relation R,
denoted by R>, is defined in a similar way as the least monotype A such that
R ◦ A = R.

A left condition is a relation R such that R = R ◦ ⊤⊤. Clearly, if R is a left
condition, then for all x, ∃(y :: x〈R〉y) ≡ ∀(z :: x〈R〉z). This suggests
that a left condition may also be interpreted as a set, as we may take it to
represent the set of values x such that ∃(y :: x〈R〉y). We usually abuse
notation by writing x ∈ R in place of ∃(y :: x〈R〉y) when R is a left
condition. A right condition is defined analogously, but we will not need to
use right conditions in this thesis.

There is obviously a 1–1 correspondence between monotypes and left con-
ditions given by the functions R 7→ R< and R 7→ R ◦ ⊤⊤. Making the right
choice of which to use can simplify calculations a great deal. We use both in
this thesis.

2.1 Pairs and product

From this point onwards we will assume that the set U is closed under pairing:
given x and y chosen arbitrarily among the elements of U, we assume that
the pair (x, y) is also in U.

24 Chapter 2. On the relation calculus

The relation R △ S (pronounced R split S) is defined as the least relation X
such that for all x, y and z,

(x, y)〈X〉z ≡ x〈R〉z ∧ y〈S〉z.

Note that the requirement that R △ S be the least relation satisfying the
above equation in X implies that there is no y such that x〈R △ S〉y when x
is not a pair. That is, the left domain of R △ S is a set of pairs.

It is common practice in mathematics not to make explicit that what is being
defined is the least solution of a certain equation. “We define the relation
R△S by (x, y)〈R△S〉z ≡ x〈R〉z ∧ y〈S〉z” is the more usual way to express
the above definition. For brevity we adopt this practice from now on.

Split enjoys the property

(R △ S) ◦ T = (R ◦ T) △ (S ◦ T) ⇐ S ◦ T ◦ T ∪ ⊆ S.(.)

The antecedent holds, for example, when T is a deterministic relation (since
then T ◦ T ∪ ⊆ I). It also holds if S is a left condition.

We define R×S (pronounced R times S) by

(x, y)〈R×S〉(z, v) ≡ x〈R〉z ∧ y〈S〉v.

The projection relations ≪ and ≫ are defined by

x〈≪〉(y, z) ≡ x=y and x〈≫〉(y, z) ≡ x=z.

The following properties are easily proved:

R×S ◦ T×U = (R ◦ T) × (S ◦ U)
R×S ◦ T △ U = (R ◦ T) △ (S ◦ U).

(.)

These laws are used most frequently in calculations. We call them fusion

laws, because they allow to “fuse” two products into one (or a product and
a split into a split). The fusion laws will allow us in chapter 3 to draw a
picture of, say, R×S ◦ T×U without ambiguity.

To complete this brief survey of relation algebra we must introduce the re-
flexive, transitive closure of a relation (see e.g. [14]), which may be defined
for relation R as a least fixed point of a certain function:

R∗ = µ(X 7→ I ∪ R ◦ X).

2.2. An example: bisimulations 25

∪ < >
∗ σ ̟ all unary operators
. function application

× + △ ▽ product, sum, split, junc
◦ relational composition

∪ ∩ union, intersection
= ⊆ equality, inclusion
∧ ∨ conjunction, disjunction
⇒ ⇐ implication, consequence
≡ boolean equivalence

Table 2.0: Precedence of operators, from highest to lowest

In [14] it is proved that the “unique extension property” (uep) of the reflexive,
transitive closure:

R = S∗
◦ T ≡ R = T ∪ S ◦ R(.)

holds if S is well-founded and, furthermore, S is well-founded if it enjoys the
property X = S ◦ X ⇒ X = ⊥⊥ for all relations X.

The large number of binary operators that we use may make it difficult to
parse our expressions; but the precedences were carefully chosen in order to
minimise the need for parentheses, and the spacing around operators hints
at the way to read a formula. See table 2.0 for a complete list of precedences.

2.2 An example: bisimulations

The following example is to show the power and concision of the relational
calculus.

Milner defines a theory of processes in his Calculus of Communicating Sys-
tems [38], where a process is, roughly, a graph with labelled arches. Such a
graph can be modelled using a collection of relations, one relation for each
label. Let’s call A the set of labels; for every a ∈ A we’ll write

a
→ for the

relation corresponding to the label a. Thus two vertices are connected by an
a-labelled arch if and only if the relation

a
→ holds between those two vertices.

A bisimulation is a relation R such that, for all a ∈ A:

p〈R〉q ⇒

(i) if p〈
a
→〉p′, then q〈

a
→〉q′ for some q′, and p′〈R〉q′

(ii) if q〈
a
→〉q′, then p〈

a
→〉p′ for some p′, and p′〈R〉q′ .

(.)

26 Chapter 2. On the relation calculus

This definition is bothersome to look at, not to mention to reason with.
A much shorter definition of bisimilarity is the following:

R is a simulation ≡ ∀(a : a ∈ A : R∪
◦

a
→ ⊆

a
→ ◦ R∪)(.)

and R is a bisimulation if and only if both R and R∪ are simulations.

Aside How does one arrive at a definition such as (.)? Here is a deriva-
tion: first note that (.) equivales, for all p,q,p′ and q′,

(p〈R〉q ⇒ (i)) ∧ (p〈R〉q ⇒ (ii)).

Now we manipulate the first conjunct: for all a ∈ A, p, q and p′,

p〈R〉q ⇒ (i)

≡ { rewrite with existential quantifier }

p〈R〉q ⇒ (p〈
a
→〉p′ ⇒ ∃(q′ :: q〈

a
→〉q′ ∧ p′〈R〉q′))

≡ { propositional calculus }

p〈R〉q ∧ p〈
a
→〉p′ ⇒ ∃(q′ :: q〈

a
→〉q′ ∧ p′〈R〉q′)

≡ { definitions of converse and composition }

q〈R∪
◦

a
→〉p′ ⇒ q〈

a
→ ◦ R∪〉p′

≡ { definition of inclusion }

q〈R∪
◦

a
→ ⊆

a
→ ◦ R∪〉p′

Hence we have proved

∀(p, q, p′ :: p〈R〉q ⇒ (i)) ≡ R∪
◦

a
→ ⊆

a
→ ◦ R∪.

and similarly we can prove

∀(p, q, q′ :: p〈R〉q ⇒ (ii)) ≡ R ◦
a
→ ⊆

a
→ ◦ R.

End aside.

Given this shorter definition, it becomes easy to prove things about bisimu-
lations:

Fact: if R, S are bisimulations, then all of

(i) I (iii) R ◦ S
(ii) R∪ (iv) R ∪ S

2.2. An example: bisimulations 27

are bisimulations too.

(i)

I∪ ◦
a
→ ⊆

a
→ ◦ I∪

≡ { I is symmetric }

I ◦
a
→ ⊆

a
→ ◦ I

≡ { I is the unit of ◦ }
a
→ ⊆

a
→

(ii) follows from R∪∪ = R

(iii)

(R ◦ S)∪ ◦
a
→ ⊆

a
→ ◦ (R ◦ S)∪

≡ { ∪ distributes over ◦ }

S∪ ◦ R∪ ◦
a
→ ⊆

a
→ ◦ S∪ ◦ R∪

⇐ { R is a bisimulation; ◦ is monotonic; transitivity }

S∪ ◦
a
→ ◦ R∪ ⊆

a
→ ◦ S∪ ◦ R∪

⇐ { monotonicity of ◦ }

S∪ ◦
a
→ ⊆

a
→ ◦ S∪

≡ { S is a bisimulation }
true

(iv)

(R ∪ S)∪ ◦
a
→ ⊆

a
→ ◦ (R ∪ S)∪

≡ { ∪ distributes over ∪ }

(R∪ ∪ S∪) ◦
a
→ ⊆

a
→ ◦ (R∪ ∪ S∪)

≡ { ◦ distributes over ∪ }

(R∪ ◦
a
→) ∪ (S∪ ◦

a
→) ⊆ (

a
→ ◦ R∪) ∪ (

a
→ ◦ S∪)

⇐ { R, S are bisimulations; ∪ is monotonic; transitivity }

(
a
→ ◦ R∪) ∪ (

a
→ ◦ S∪) ⊆ (

a
→ ◦ R∪) ∪ (

a
→ ◦ S∪)

≡ { X ⊆ X }
true

28 Chapter 2. On the relation calculus

Chapter 3

About circuits

This chapters describes a calculus of circuits based on the previous chap-
ter’s calculus of relations. In particular we are going to specify that the
universe U on which the relations are defined is a set of streams, that is,
functions from the integers. We then define lifted relations, which model
combinational circuits, and delay relations, which model memory elements,
and other primitive circuits, as well as ways to build larger circuits by com-
bining circuits together. A formal definition of what we mean by “circuit”
is given. Finally, we give a number of rules for circuit transformation. Many
properties of circuits are given; most of the proofs are to be found in the
appendices.

The formalization of circuits we give in this chapter is along the lines of the
Ruby language of Mary Sheeran and Geraint Jones. Good Ruby tutorials
include [25, 24, 49]. Our version of Ruby uses a different syntax, and a differ-
ent interpretation for product. The reason for our choosing a different syntax
is to be “compatible” with previous work on relation algebra in Eindhoven,
and to ease legibility. In fact, we feel that expressions like the Ruby

[R;S, T ;V](.)

are much less legible than the alternative

(R ◦ S) × (T ◦ V)

because “,” is smaller than “;”, so many people incorrectly read (.) as

[R; (S, T);V].

29

30 Chapter 3. About circuits

In standard Ruby the term R×S is interpreted as a relation between pair-
valued streams (see below). In this thesis we interpret R×S as a relation
between pairs of streams. A discussion of this choice is in chapter 11.

A further difference between our calculus and standard Ruby is that we
generally think of right-to-left as the default direction of travel of data. This
corresponds to the convention used in functional programming, where f • g
is the program executed by first evaluating g, then f . In Ruby the opposite
convention is used.

3.0 Circuits and lifted relations

Following established practice (see [10, 25, 46]) we model a circuit as a rela-
tion between arbitrary collections of streams , a stream being a total function
with domain the integer numbers. Abusing language somewhat, we will use
the word “circuit” to mean an actual circuit, or a relation between streams
as described above. Context should make clear which one is meant.

We usually denote (collections of) streams by the letters a through e.

As an alternative to our definition, it is possible to define streams as functions
on the natural numbers (rather than the integers); but this leads to a more
complicated theory, where some equalities no longer hold (for details see [24]).
Our definition corresponds in a sense to ignoring initialisation problems. One
may see here an analogy with traditional derivation of programs where one
can factor a proof of correctness into a proof of partial correctness together
with a proof of termination. What we have instead is a derivation of a circuit
that is correct provided that the circuit can be initialized. This leaves us with
the obligation of proving that our circuits can be correctly initialized. We
will not devote much space to this latter problem. We trust that the reader
will see that our circuits can be initialized provided that there is a way to
set the contents of all boolean delays to appropriate values. We assume that
some “reset” wire exists in the implementation that performs this function,
and we will not give further mention to this issue.

Given a relation R, a relation between streams can be constructed by “lift-
ing”: a〈Ṙ〉b ≡ ∀(n :: a.n 〈R〉 b.n). Hence for any R, relation Ṙ is a
circuit. Note that, for deterministic relation f , stream a and integer m,
f.a.m = (ḟ .a).m. We refer to this property in our calculations by the hint
“lifting”. Circuits can be built by relational composition, and product: given
R and S, two circuits, the relations R ◦ S and R×S are also circuits. Other
combining forms exist; a formal definition is in page 34.

3.1. Delays and stream identity 31

3.1 Delays and stream identity

A particular relation on streams is the primitive delay, denoted by ∂ and
defined by

a〈∂〉b ≡ ∀(n :: a.(n+ 1) = b.n).

The delay relation, written ✁, is a generalisation of primitive delay to arbi-
trary pairings of streams. It is defined as the least fixed point of function
X 7→ ∂ ∪ X×X:

✁ = µ(X 7→ ∂ ∪ X×X).

Delay can be thought of informally as the union of an infinite list of terms

✁ = ∂ ∪ ∂×∂ ∪ ∂×(∂×∂) ∪ (∂×∂)×∂ ∪ (∂×∂)×(∂×∂) ∪ . . .

The antidelay ✄ is defined to be the converse of delay. In the interpretation
as circuits, a delay is a memory element that, at every clock tick, outputs
the contents of memory on the left side and replaces the contents of memory
with the input on its right side. The interpretation of antidelays is the same,
with the role of “left” and “right” reversed. (Operationally, one should take
care to interpret the right hand side of a delay as the input, and the left hand
side as the output; the opposite holds for the antidelay. See section 3.6 for
further details on the operational interpretation of delays.) Note that both
✁ and ✄ are deterministic.

We define the identity relation for streams in a way that is similar to how
we defined delay. The primitive stream identity is defined by

a〈ῑ〉b ≡ ∀(n :: a.n = b.n).

The identity on arbitrary pairings of streams, denoted by ι, is then defined
by

ι = µ(X 7→ ῑ ∪ X×X).(.)

The delay relations apply the primitive delay ∂ to a collection of wires, in-
dependently of the shape of the collection: for ✸ ∈ {✁,✄},

✸ ◦ ι×ι = ✸×✸ = ι×ι ◦ ✸.(.)

32 Chapter 3. About circuits

(see the proof in section A). These equations express the fact that applying
delay or antidelay to a pair of (collections of) wires (✸ ◦ ι×ι) is the same
as applying it to each component of the pair (✸×✸). From this property,
one immediately obtains the following useful distributivity properties: for
✸ ∈ {✁,✄},

✸ ◦ R×S = (✸ ◦ R)×(✸ ◦ S)
R×S ◦ ✸ = (R ◦ ✸)×(S ◦ ✸)
✸ ◦ R △ S = (✸ ◦ R) △ (✸ ◦ S).

(.)

A domain property that we use frequently is

✁< = ✁> = ι = ✄< = ✄>.(.)

From (.) and the fact that delays are deterministic, one obtains

R △ S ◦ ✸ = (R ◦ ✸) △ (S ◦ ✸).(.)

When reasoning pointwise, it is useful to remember the delay introduction

rules: for all streams a and integers n,

a.n = (✁.a).(n+ 1) and a.(n+ 1) = (✄.a).n

Other important properties of delays are introduced in section 3.5.0.

3.2 Other circuit primitives

A particular wiring relation is term (for “terminator”), defined by

term = ι △ ι ◦ ⊤⊤.

It is easy to calculate that term satisfies, for all a, b and c,

(a, b)〈term〉c ≡ a = b.

We write Kx for a “constant circuit”, actually a left condition, defined by

a〈Kx〉b ≡ ∀(n :: a.n = x).

3.2. Other circuit primitives 33

An obvious property of constant circuits is

Kx ◦ R = Kx ◦ R>

for all R.

Note that Kx is a lifted relation, with Kx = ḟ and f.y = x for all y.

The feedback of a circuit R, written Rσ, is defined by

a〈Rσ〉b ≡ a〈R〉(b, a);(.)

for f a deterministic relation, the above can be written

a = fσ.b ≡ a = f.(b, a) .(.)

Loop and feedback are described, e.g., in Rietman [46, pages 23–25]. The
feedback can be defined within the algebra, since the following

Rσ = (R∩≪) ◦ ι △ ⊤⊤

is equivalent to (.). The loop of a relation R, denoted by R̟, is defined by

a〈R̟〉b ≡ ∃(c :: (a, c)〈R〉(b, c)).

Loop and feedback enjoy the following properties:

Rσ = (ι △ ι ◦ R)̟ loop-feedback
R ◦ S̟

◦ T = (R×ι ◦ S ◦ T×ι)̟ loop fusion
(ι×R ◦ S)̟ = (S ◦ ι×R)̟ loop leapfrog
Rσ = (R∩≪) ◦ ι △ Rσ feedback unfolding
(R×S)̟ = R if S 6= ⊥⊥
R̟ × S̟ = (zip ◦ R×S ◦ zip)̟

R̟
◦ S̟ = (rsh ◦ R×ι ◦ zip ◦ S×ι ◦ lsh)̟.

(.)

For any two lifted relations Ṙ and Ṡ, define Ṙ▽Ṡ (pronounced “junc”) by

a〈Ṙ▽Ṡ〉(b, c) ≡ ∀(t : ¬(b.t) : a.t 〈R〉 c.t) ∧ ∀(t : b.t : a.t 〈S〉 c.t);

junc can be defined by means of lifting of an “if-then-else” function. Junc
is especially useful within a feedback loop. For instance, the following is a
circuit that counts the number of consecutive “true” values it inputs:

(K0
▽(+̇1) ◦ ι×✁)σ.

When the input is true, the output is one plus the previous output. When
the input is false, the output is zero.

34 Chapter 3. About circuits

3.3 Summary of circuits

We may now define what a circuit is:

Definition . circuit

0. If R is a relation then Ṙ is a circuit.

1. The identity ι, the projections ≪ and ≫ and term are circuits.

2. If R,S are circuits, then R ◦ S, R×S, R △ S, Rσ and R∪ are circuits.

3. Delays and antidelays are circuits.

A circuit R is said to be combinational if it is defined exclusively by means
of the first three items in the above list; i.e., if delay and antidelay do not
appear in its definition.

A circuit term has an interpretation as a picture that is often useful as an aid
to understanding how a circuit term is interpreted as a real circuit. Figure .
shows the correspondence between pictures and circuit terms. Note that the
convention for drawing e.g., R×S, is that R is drawn below S; the same
convention holds for R △ S.

3.3.0 On combinational paths and systolic circuits

The picture interpretation of a circuit suggests that we may interpret a circuit
as a graph, where delays and lifted relations are vertices, and everything else
(the wires) is the edges. A combinational path is a path in the graph that
does not contain delays. For instance, in the circuit in the figure below,

∧
∧

a
b

there is a combinational path from node a to node b. The presence of long
combinational paths is usually bad from the point of view of the performance
of a circuit. The longer a combinational path is, the longer it takes for the
circuit to “settle down” after a change of state of the inputs [28].

3.3. Summary of circuits 35

ι ≪ ≫ term

R R S
S

R

S

R

Ṙ R ◦S R× S R △S

▽

S

R
R

Ṙ ▽ Ṡ Rσ
✁ ✄

Figure .: Circuits and their pictures

The operational interpretation that we give to our circuits is that of syn-
chronous circuits. Lifted relations correspond to combinational circuits, and
delays to memory elements. We suppose the existence of a global clock. At
every tick of the clock, all delays change state, by reading their input and
accepting it as their new state.

A combinational circuit, e.g. ∧̇, will not change its output immediately after
a change in its input. A certain time is needed before the output becomes
stable and correct; therefore after each change of state of the delays, a period
of time ensues where the combinational elements compute their new output
values. Only after all of the combinational elements have settled down on a
value it is safe to execute the next state transition. Since all delays change
state simultaneously, the clock period must be long enough to allow for the
longest of all combinational paths to settle down. If one path is considerably
longer than the others, this means that some parts of the system will settle
down before others, and they perform no useful computation while they wait
for the other parts to settle down.

36 Chapter 3. About circuits

For these reasons, it is preferable to keep all combinational paths as small as
possible, so that no part of the circuit wastes time waiting for other parts to
settle down.

A circuit is said to be systolic when there are no combinational paths; in
other words, when all paths between combinational elements are interrupted
by at least a delay [31].

The operational interpretation of circuits is formalized in chapter 9, where
the interpretation of a circuit as a graph is used, to translate a circuit into
an imperative program.

3.4 Wiring relations

There is a class of relations that, rather than “performing an operation” on
values, simply rearranges a structure of values into another structure. An
example is the swap operation, that is defined as the smallest relation such
that

(a, b)〈swap〉(b, a)

Relations such as swap are usually pictured as a rearrangement of wires:

We call such relations “wiring” relations. Other examples of wiring relations
are I, ≪ and ≫, and all relations built from wiring relations by composition,
split and product.

3.4.0 Zips

It is common in functional programming to use a function called z̃ip, which
is usually defined as

z̃ip.([], []) = []

z̃ip.(a : as, b : bs) = (a, b) : z̃ip.(as , bs)

3.4. Wiring relations 37

zip rsh lsh

Figure .: Wiring relations

(here we write a : as for the list that has head a and tail as , and [] for
the empty list; more on this functional programming notation in chapter 9).

Function z̃ip transforms a pair of lists into a list of pairs:

z̃ip.([a, b, c], [d, e, f]) = [(a, d), (b, e), (c, f)].(.)

(Note that the definition of zip above holds for infinite as well as finite lists.)

We define a wiring relation that is the same as z̃ip above, that relates a pair
of pairs to a pair of pairs:

((a, b), (c, d))〈zip〉((a, c), (b, d)).(.)

Figure . shows a picture interpretation of zip. To relate zip with z̃ip , note
that when applied to a pair of two-elements list z̃ip satisfies:

z̃ip.([a, b], [c, d]) = [(a, c), (b, d)].

From the definition, a number of properties follow immediately:

zip = zip∪

zip ◦ zip = (I×I)×(I×I)
zip ◦ (R×S)×(T×U) = (R×T)×(S×U) ◦ zip

zip ◦ (R×S) △ (T×U) = (R △ T)×(S △ U)
zip ◦ (R △ S)×(T △ U) = (R×T) △ (S×U).

(.)

All of these equations are easily proved by pointwise reasoning. The proof of
the third equation is:

38 Chapter 3. About circuits

((a, b), (c, d))〈zip ◦ (R×S)×(T×U)〉((x, y), (z, w))

≡ { definition (.) }

((a, c), (b, d))〈(R×S)×(T×U)〉((x, y), (z, w))

≡ { definition of product }

a〈R〉x ∧ c〈S〉y ∧ b〈T 〉z ∧ d〈U〉w

≡ { definition of product }

((a, b), (c, d))〈(R×T)×(S×U)〉((x, z), (y, w))

≡ { definition (.) }

((a, b), (c, d))〈(R×T)×(S×U) ◦ zip〉((x, y), (z, w)).

The proof of the fourth equation is

((a, b), (c, d))〈zip ◦ (R×S) △ (T×U)〉((x, y), (z, w))

≡ { definition (.) }

((a, c), (b, d))〈(R×S) △ (T×U)〉((x, y), (z, w))

≡ { definition of split and product }

a〈R〉(x, y) ∧ c〈S〉(z, w) ∧ b〈T 〉(x, y) ∧ d〈U〉(z, w)

≡ { definition of split and product }

((a, b), (c, d))〈(R △ T)×(S △ U)〉((x, y), (z, w)),

and the proof of the fifth equation is entirely similar to the last one:

((a, b), (c, d))〈zip ◦ (R △ S)×(T △ U)〉((x, y), (z, w))

≡ { definition (.) }

((a, c), (b, d))〈(R △ S)×(T △ U)〉((x, y), (z, w))

≡ { definition of split and product }

a〈R〉(x, y) ∧ c〈S〉(x, y) ∧ b〈T 〉(z, w) ∧ d〈U〉(z, w)

≡ { definition of split and product }

((a, b), (c, d))〈(R×T) △ (S×U)〉((x, y), (z, w)).

3.5. Circuit transformations 39

3.4.1 Left and right shifts

Other useful wiring relations are lsh and rsh, defined by

((a, b), c)〈lsh〉(a, (b, c)) and (a, (b, c))〈rsh〉((a, b), c).

The names stand for “left shift” and “right shift”. Clearly it holds

lsh ◦ rsh = (ι×ι)×ι and rsh ◦ lsh = ι×(ι×ι).

Figure . on page 37 shows picture interpretations of lsh and rsh.

3.5 Circuit transformations

In this section, we illustrate some techniques that can be used to improve
the performance of circuits. The two most important techniques that are
used to transform circuits are slowdown and retiming. These techniques
were introduced in two papers by Leiserson and Saxe [32, 33]. Additional
bibliography can be found in F.T. Leighton’s book [30]. The presentation
here is based on Jones [24].

3.5.0 Retiming

Retiming [33] is a transformation that is essentially based on the following
laws: given that R is a circuit as defined above,

✁ ◦ R = R ◦ ✁ and ✄ ◦ R = R ◦ ✄.(.)

These laws can be proved by structural induction on definition .; see sec-
tion A. Combining (.) with the property that

✄ ◦ ✁ = ι = ✁ ◦ ✄(.)

we obtain the properties

R = ✄ ◦ R ◦ ✁ and R = ✁ ◦ R ◦ ✄(.)

for all circuits R. The use of the retiming law in circuit design is illustrated
in example . on page 42.

40 Chapter 3. About circuits

✁ ◦ term term ✁ ◦✄ ι

Figure .: Comparing instances of (.) and (.)

Note that the retiming law (.) breaks down when the domain of streams
is taken to be the natural numbers rather than the integers. Instead of
equalities one obtains isomorphisms up to retiming, making calculations more
cumbersome.

A useful property of term is that, for ✸ ∈ {✁,✄},

✸ ◦ term = term.(.)

In fact:

✸ ◦ term

= { (.) }

✸ △ ✸ ◦ ⊤⊤

= { (.) }

ι △ ι ◦ ✸ ◦ ⊤⊤

= { for all R, it holds R ◦ ⊤⊤ = R< ◦ ⊤⊤ }

ι △ ι ◦ ✸< ◦ ⊤⊤

= { (.) }

term.

An intuitive understanding of why this law is true can be gained by comparing
the picture interpretation of (.), with the picture interpretation (.), for
R = ι (see figure .): the pictures are the same, modulo the orientation of
the wires.

3.5. Circuit transformations 41

3.5.1 Slowdown

Another optimisation technique is slowdown [26]. Given a circuit R, the
circuit slow.R is defined by

slow.R = B ◦ R×R ◦ B
∪,

where B, pronounced “bundle”, is defined by

B = µ(X 7→ B ∪ X×X ◦ zip)(.)

and B is defined by

a〈B〉(b, c) ≡ ∀(n :: b.n = a.(2n) ∧ c.n = a.(2n+ 1)).

A bundle, when seen as a circuit with input on the right, is a device that
repeatedly inputs a pair on the right, and outputs the elements of the pair
one at a time on the left.

An immediate consequence of (.) is

ι×ι ◦ B = B×B ◦ zip = B ◦ (ι×ι)×(ι×ι).(.)

It can be shown by structural induction (see section B) that, for any circuit R,
the circuit slow.R is equal to the one obtained by replacing every occurrence
of ✄ and ✁ in R by ✄ ◦ ✄ and ✁ ◦ ✁, respectively. The slowed circuit is not
equivalent to the original one; it has different timing properties. A slowed
circuit can be seen as a circuit that performs two independent interleaved
calculations, one on the odd clock ticks, the other on the even ticks.

The reason for implementing a slowed version of a circuit is that the extra
delays that are introduced can be shifted around by means of the retiming
laws, with the general goal of making the circuit more systolic [32].

A slowed circuit generally takes more area than its non-slowed counterpart;
this is the consequence of having twice as many delays. On the other hand,
the slowed circuit can often be retimed in a way to make it faster. Further-
more, the slowed circuit performs an extra interleaved computation that can
be exploited.

42 Chapter 3. About circuits

Example . Retiming and Slowdown

To illustrate the use of slowing and retiming, suppose we are implementing
circuit

(ι×✁ ◦ R)n ◦ term(.)

for some n > 0. The picture interpretation (for n = 3) shows a long combi-
national path:

R R R

By retiming, one obtains:

(ι×✁ ◦ R)n ◦ term

= { retiming (.) }

(✄ ◦ ι×✁ ◦ R ◦ ✁)n ◦ term

= { delays, (.) and (.) }

(✄×ι ◦ R ◦ ✁)n ◦ term

= { retiming (.) }

(✄×ι ◦ R)n ◦ ✁
n

◦ term

= { equation (.) }

(✄×ι ◦ R)n ◦ term.

This transformation does not buy us anything, since the resulting circuit still
has a long combinational delay:

R R R

But, if we choose to implement a slowed version of (.) instead, we have:

3.5. Circuit transformations 43

slow .((ι×✁ ◦ R)n ◦ term)

= { slowing is the same as doubling the delays;

assume R is combinational }

(ι×(✁ ◦ ✁) ◦ R)n ◦ term

= { fusion (.) }

(ι×✁ ◦ ι×✁ ◦ R)n ◦ term

= { the above derivation,

taking R := ι×✁ ◦ R }

(✄×ι ◦ ι×✁ ◦ R)n ◦ term

= { fusion (.) }

(✄×✁ ◦ R)n ◦ term.

The last line is a circuit whose interpretation has no long combinational
paths:

R R R

In fact, the length of the longest combinational path is no longer dependent
on n. Note that the placement of delays and antidelays implies that the flow
of data through the circuit is both from left to right and from right to left;
this is called “contra-flow”.

Example . Tangram and shift registers

The purpose of this example is to show how the slowdown theorem allows
one to reason about different implementations of buffers, and to introduce
the Tangram language, which is described in more detail in chapter 9.

An n-places shift register is a device with an input stream a and an output
stream b, such that for all t,

b.t = a.(t− n).(.)

It is immediately obvious that ✁n is a circuit that satisfies this specification.

44 Chapter 3. About circuits

In his Ph.D. thesis [51], Van Berkel discusses the pros and cons of two different
designs for shift registers. Below is the Tangram code from a technical report
by Van Berkel and Rem [52], for what they call a “ripple register”, with n = 2.

(a?T & b!T) •
begin

x0, x1 : var T
| forever do b!x1; x1 := x0; a?x0 do
end

(.)

The circuit described by this Tangram fragment is very similar to

✁
2.

It satisfies the same specification about the input-output histories of its ports
a and b; and one could identify the two memory elements named x0 and x1
in the above program with the two unnamed delays in ✁

2, and verify that
the sequences of values held in x0 and x1 are equal to the sequences of val-
ues “held”, respectively, in the rightmost and leftmost delay. In [52] it is
remarked that in ripple registers values travel through all of the memory ele-
ments before being output, thus causing a relatively large energy dissipation.
The cause of the problem is the command x1 := x0. An alternative design
is then proposed, called a “wagging register”. A two-places wagging register
is described by the following Tangram fragment:

(a?T & b!T) •
begin

x0, x1 : var T
| forever do b!x0; a?x0; b!x1; a?x1 do
end

(.)

The above program can be seen to satisfy (.); yet there is no internal
copying of values, like in (.). The input values are written first in x0 and
then in x1, in alternating fashion. The result is a circuit that dissipates less
energy. The alternating behaviour of (.) suggests that we may obtain a
similar design by means of bundles. Indeed, by the slow theorem, we know
that ✁2 = B ◦ ✁×✁ ◦ B∪. The right hand side of the last formula closely
corresponds closely to (.).

This example shows how much more concise the relational notation is com-
pared to CSP-like notations. It also shows that this fragment of “register
theory” is a special case of the more general slow theorem.

3.6. Realizability 45

3.5.2 Pipelining

A standard technique that can be used to make a circuit systolic is pipelining,
which consists in breaking a computation in more stages, by placing delays,
in order to shorten propagation paths. This technique is illustrated in the
following example. Suppose we are to implement circuit

Rn.(.)

By the retiming law (.), we have that (.) is equal to

✄
n

◦ (✁ ◦ R)n.(.)

If in (.) all information flows from right to left, then the term

(✁ ◦ R)n.(.)

is implementable, but (.) is not, because of the ✄
n term. The solution

is to implement (.) only, and consider ✄n as an interface that documents
the difference between (.) and (.). This interface can be interpreted to
mean that the results will appear on the left side of circuit (.) exactly n
clock ticks later than they do in the original circuit. The delay in the arrival
of results is called the latency time of a pipelined circuit.

In summary, when we pipeline a circuit we trade clock period with latency
time.

3.6 Realizability

We conclude this chapter with a remark on the realizability of the circuits we
derive. In the algebra of relations there is no notion of “input” or “output”.
When one wishes to implement a relation algebra term as an actual circuit,
input and output directions must be assigned to each wire. But not all
choices of directions yield an implementable circuit. For instance, if add is
a relation such that a〈add〉(b, c) ≡ a = b + c, then choosing a as input
and b, c as output would yield a non-deterministic circuit. One must pay
particular attention to delays and antidelays, since they can be implemented
in just one way: every delay must have input on the right side, and output
on the left side; and the other way around for antidelays. If there is no way
to choose inputs and outputs such that every delay and antidelay is driven

46 Chapter 3. About circuits

in the correct direction, then the circuit is not implementable. For instance,
the following program,

✄ ◦ add ,

when assigned input on the right hand side and output on the left hand side,
would produce a stream of numbers such that each one is the sum of the
two numbers that will be input one clock tick in the future! Since digital
technology is not (yet) able to predict the future, it is reasonable to rule out
circuits such as this as non-implementable.

A more formal and thorough discussion of implementability is given in Hut-
ton’s thesis [23]. Notes on the implementability of bundle are in Sandum’s
report [47].

Chapter 4

Tuples and generalised
products

This chapter contains introductory material that is only needed for chap-
ters 5, 6 and 10.

In the previous chapter a calculus of circuits is introduced. The two main
combining forms are composition and product. In this chapter we generalise
product to n-wide products; this will allow us to describe circuits whose size
and structure depends on integer parameters. Most of the space is dedicated
to combining forms, that are n-wide generalisations of operators described
in the previous chapter.

We generalise the relational product to n-wide products. A product of a
single relation is the relation itself. A product of two relations is the usual
relational product. The product of n relations R0 through Rn−1 is R0×(R1×
(. . .×Rn−1)). By adopting the convention that × associates to the right, we
can write the above product as simply R0×R1× . . .×Rn−1. Corresponding
to n-wide products we have n-tuples. For instance, a 3-tuple has the shape
(a, (b, c)) for some a, b, c. By adopting the convention that pairing associates
to the right, we write the above tuple as simply (a, b, c).

Our convention for representing tuples is ambiguous: if we substitute c :=
(d, e) in (a, b, c) it turns out that the “3-tuple” is also a 4-tuple. This ambi-
guity is not a problem for our purposes. When we write (a, b, c), all we know
is that it represents a tuple of at least three elements. The same ambiguity
happens with n-wide products: the product R×S×T is 3-wide, but if we
substitute T := U×V in it we get a 4-wide product.

We now define a notion of left and right arity for circuits. First we introduce

47

48 Chapter 4. Tuples and generalised products

the (n) family of monotypes:

(1) = ι
(n+ 1) = ι×(n) for n≥ 1.

(.)

For any expression E in the positive integers, we can assign a corresponding
monotype (E) by means of definition (.). When the expression is just a
numeral or a single letter, we can drop parentheses, and write n in place of
(n).

We say that R has right arity n iff

R = R ◦ n.

similarly, we say that R has left arity n whenever

R = n ◦ R.

We take the expression R ∈ n ∼ m to mean that R has left arity n and
right arity m:

R ∈ n ∼ m ≡ R = n ◦ R ∧ R = R ◦ m.

So for instance we can say that pointwise disjunction, ∨̇, has arity 1 ∼ 2.

The following is a simple consequence of (.) and (.):

(n)⊆ (m)⇐ n>m.

4.0 Maps

We now define new operations. The well-known map operation generates the
product of n copies of a circuit:

map1.R = R
mapn+1.R = R×mapn.R for n≥ 1

For every R, we have mapn.R ∈ n ∼ n. Corresponding to the fusion
law (.) we have the map fusion law:

mapn.(R ◦ S) = mapn.R ◦ mapn.S.(.)

4.0. Maps 49

R

R

R

R R R

R

R

R

R
R

R

R

map4.R tri4.R fold4.R

fork 4 zip4

Figure .: Instances of tuple operations

Suppose F is a function from integers to circuits. The parallel composition

F.0× F.1× . . . × F.(n− 1)

can be represented by extending the map notation in the following way:0

map.(i : 0≤ i < n : F.i).

In the remainder of the thesis, the subscripts will be dropped from map and
similar operations where they are easily inferred from the context.

0This extension of the map operator is the only example of heterogeneous combinator

that we need in this thesis. Such combinators were introduced by Wayne Luk in [34].
Luk’s notation for map.(i : 0 ≤ i < n : F.i) is ‖

0≤i<n

Fi.

50 Chapter 4. Tuples and generalised products

4.1 Folds

Suppose that a circuit R has arity 1 ∼ 2. Typical examples of this kind of
circuit are lifted binary operations like ∧̇. To “apply” ∧̇ to a collection of
wires, one would use a circuit of the shape

∧

∧

∧

The fold operation generalises the above example1. We define fold by

fold1.R = ι
foldn+1.R = R ◦ ι× foldn.R for n≥ 1

From the definition, we have

foldn.R ∈ 1 ∼ n.

A law about map and fold is the following: given R and S such that

R ◦ S×S = S ◦ R

then

foldn.R ◦ mapn.S = S ◦ foldn.R.(.)

The proof is by induction on n; for n = 1 it is trivially true. For n + 1 we
have

foldn+1.R ◦ mapn+1.S

= { definitions }

R ◦ ι× foldn.R ◦ S ×mapn.S

= { fusion, induction hypothesis }

R ◦ S×(S ◦ foldn.R)

= { proviso: R ◦ S×S = S ◦ R; fusion }

S ◦ R ◦ ι× foldn.R

= { definition }

S ◦ foldn+1.R.

1The Ruby literature defines a similar construction called rdr .

4.2. Forks 51

The proviso R ◦ S×S = S ◦ R is a distributivity requirement. For instance,
if we take ordinary addition for R, and we take (∗x) for S, i.e. S is the relation
that multiplies the input by x, the proviso equivales the distributivity law
for numbers, ∀(y, z :: x∗y + x∗z = x∗(y+z)). The proviso is also satisfied
by choosing S = ✁, for any circuit R.

4.2 Forks

A generalisation of ι △ ι is fork , defined by

fork 1 = ι
forkn+1 = ι △ forkn for n≥ 1

The arity of fork is

forkn ∈ n ∼ 1.

Clearly it holds that

(a1, a2, . . . , an)〈forkn〉b ≡ ∀(i : 1≤ i≤ n : ai = b).

The property analogous of (.) is, for f a deterministic relation,

forkn
◦ f ≡ mapn.f ◦ forkn.(.)

4.3 Triangles

Another useful construct is tri (triangle), defined by

tri1.R = ι
trin+1.R = ι×(trin.R ◦ mapn.R) for n≥ 1

The arity of tri is:

trin.R ∈ n ∼ n.

An alternative definition of tri is:

trin.R = map.(i : 0≤ i < n : Ri).(.)

52 Chapter 4. Tuples and generalised products

There is a so-called Horner’s rule [25] that is useful in reasoning with tri and
fold : if it is the case that R ◦ S×S = S ◦ R, then, for all n≥ 2

foldn.R ◦ trin.S = foldn.(R ◦ ι×S).(.)

This rule is useful because the right hand side suggests an implementation
that requires O(n) copies of S, whereas the left hand side requires O(n2). If
we take ordinary addition for R, and we take (∗x) for S, the rule corresponds
to the well-known Horner’s rule for evaluating polynomials:

a0 + a1∗x + a2∗x
2 + · · · + an∗x

n = a0 + x∗(a1 + x∗(a2 + · · · + x∗an)).

The proof of Horner’s rule is by induction on n. For n = 2 both sides of (.)
reduce to R ◦ ι×S. For n≥ 2,

foldn+1.R ◦ trin+1.S

= { definitions }

R ◦ ι× foldn.R ◦ ι×(trin.S ◦ mapn.S)

= { fusion }

R ◦ ι×(foldn.R ◦ trin.S ◦ mapn.S)

= { tri .X and map.X commute; the proof is simple }

R ◦ ι×(foldn.R ◦ mapn.S ◦ trin.S)

= { by the proviso, we can use (.) }

R ◦ ι×(S ◦ foldn.R ◦ trin.S)

= { induction hypothesis }

R ◦ ι×(S ◦ foldn.(R ◦ ι×S))

= { fusion }

R ◦ ι×S ◦ ι× foldn.(R ◦ ι×S)

= { definition }

foldn+1.(R ◦ ι×S).

This concludes the proof of Horner’s rule.

4.4 Zips

The generalised version of zip is as follows:

zip1.(a, b) = (a, b)
zipn+1.((a, b), (c, d)) = ((a, c), zipn.(b, d)) .

4.4. Zips 53

The above is an acceptable relational definition, since a function is also a
relation. Informally, zipn transforms a pair of n-tuples into an n-tuple of
pairs. The arity of zipn is thus

zipn ∈ n ∼ n×n.

For n = 2 the above definition simplifies to definition (.). A property of
zip, corresponding to one of (.), is

zipn
◦ mapn.R×mapn.S = mapn.(R×S) ◦ zipn,(.)

and a similar law holds about zip and tri :

zipn
◦ trin.R× trin.S = trin.(R×S) ◦ zipn.(.)

Two other laws about zipn are

zipn
◦ mapn.R △ mapn.S = mapn.(R △ S)(.)

and

zipn
◦ forkn

△ forkn = mapn.(ι △ ι) ◦ forkn.(.)

There is a law that links zipn and zip2: for n≥ 2,

zipn = (foldn.zip2)
∪;(.)

the proof is by induction:

zip2 = (fold2.zip2)
∪

≡ { fold2 = ι×ι }

zip2 = zip2
∪

≡ { (.) }

true

and

54 Chapter 4. Tuples and generalised products

zipn+1 = (foldn+1.zip2)
∪

≡ { definition of fold }

zipn+1 = (zip2
◦ ι× foldn.zip2)

∪

≡ { inverse over composition }

zipn+1 = ι× foldn.zip2
◦ zip2

≡ { by induction }

zipn+1 = ι×zipn
◦ zip2.

We continue pointwise. We can use function application notation instead of
〈−〉 notation because zip is deterministic; and since zip is only defined on
pairs of pairs, we can write:

(ι×zipn
◦ zip2).((a, as), (b, bs))

= { application of zip2 }

(ι×zipn).((a, b), (as , bs))

= { definition of product }

((a, b), zipn.(as , bs))

= { definition of zip }

zipn+1.((a, as), (b, bs)).

This concludes the proof of (.).

4.5 Bundles

Bundle can also be generalised. Define, for n≥ 1,

a〈Bn〉(b0, b1, . . . , bn−1) ≡ ∀(t, k : 0≤ k < n : a.(t∗n + k) = bk.t)

and

Bn = µ(X 7→ Bn ∪ X×X ◦ zipn
∪).(.)

The last equation is a generalisation of (.), because B2 = B and zip2 =
zip = zip∪. The arity of bundle is then:

Bn ∈ 1 ∼ n.

4.5. Bundles 55

ι×ι ◦ B4 B4×B4 ◦ zip∪

4

Figure .: An instance of (.)

From (.) it is immediate to obtain

ι×ι ◦ Bn = Bn×Bn ◦ zipn
∪ = Bn ◦ mapn.(ι×ι).(.)

that is a generalisation of (.). A more general result is

m ◦ Bn = Bn ◦ mapm.n = mapm.Bn ◦ trnn,m,(.)

where trnn,m is the component that transposes n m-tuples into m n-tuples:

((a1,1, . . . , a1,m), . . . , (an,1, . . . , an,m)) 〈trnn,m〉 ((a1,1, . . . , an,1), . . . , (am,1, . . . , am,n)) .

In other words, trn is the transpose operation that takes a n-tuple of m-
tuples, interpreted as a n×m matrix, into the transposed m×n matrix. This
component may be defined by

trnn,m = foldn.zipm.

Some properties of trn are

trn2,m = zipm

56 Chapter 4. Tuples and generalised products

Figure .: rot4

and

trnn,2 = zipn
∪.

Another property of bundle is

Ṙ ◦ Bn = Bn ◦ mapn.Ṙ.(.)

4.6 Rotations

A useful wiring relation is rot , defined by

rotn = appendn
◦ ≫ △ ≪,

where appendn transforms a pair of n-length tuples in a single 2n-length
tuple:

(a, b)〈append1〉(a, b)
(a, d)〈appendn+1〉((a, b), c) ≡ d〈appendn〉(b, c) for n≥ 1

Informally, rot “rotates” the wires one position to the left (you are supposed
to think of input being on the right side):

(a2, a3, . . . , an, a1)〈rot〉(a1, a2, a3, . . . , an).

The append in the definition of rot is needed to restore the proper structure
of the wires; for instance,

(≫ △ ≪).(a, b, c, d) = (≫ △ ≪).(a, (b, c, d)) = ((b, c, d), a)

4.7. Cyclic multiplexers 57

and

append .((b, c, d), a) = (b, (c, d, a)) = (b, c, d, a).

Clearly, rot must satisfy

rotnn = n,

and

rotn
∪

◦ rotn = n,

and

rotn
∪ = rotn−1

n .

4.7 Cyclic multiplexers

Wayne Luk introduced in [35] the cmx i,N component (from “cyclic multi-
plexer”), defined by

cmx i,n = Bn ◦ rot∪i ◦ ≪×mapn−1.≫ ◦ rot i ◦ Bn
∪

(the definition presented here is more general; Luk’s definition only considers
the case i = 0). The cyclic multiplexer can be interpreted as a device that
has two inputs (on the right) and one output (on the left). At each time
t, if t mod n = i then cmx i,n behaves like ≫; otherwise, it behaves like
≪. In other words, the left input “passes through” once every n clock ticks.
Formally, cmx i,n satisfies

a〈cmx i,n〉(b, c) ≡ ∀(t : t mod n = i : a.t = b.t)
∧ ∀(t : t mod n 6= i : a.t = c.t).

(.)

A useful property of cmx i,n is

cmx i,n ◦ Ṙ △ Ṡ = Bn ◦ rot∪i ◦ Ṙ×mapn−1.Ṡ ◦ rot i ◦ Bn
∪.(.)

The proof is easily obtained by pointwise reasoning.

A cyclic multiplexer is easily implemented in practice using a counter and a
multiplexer; see for instance Katz [28].

58 Chapter 4. Tuples and generalised products

Chapter 5

The carré problem

In this chapter we show the derivation of an efficient circuit, from a specifi-
cation which is implementable, but inefficient in terms of area.

The carré problem is described, and solved, in a short note by Rem [45]. A
carré is a sequence such that the first half is equal to the second half. We
want to derive a circuit that, given an input stream, flags whether the last
2N symbols read were a carré, for fixed N .

Rem solves the problem by deriving an imperative program, that can be
interpreted as a circuit, by means of pointwise predicate calculus. Here we
solve the problem in a different way: we will obtain a relation algebra term by
mostly point-free relation algebra calculations. This term can be interpreted
as a circuit as well. The circuit interpretation of our result is similar to the
circuit presented by Rem, and is just as efficient in terms of area. However,
our calculations are

We want to construct a circuit C that, given an input sequence, outputs true
whenever the last 2N symbols read were a carré, and outputs false otherwise.
Formally,

a〈C〉b ≡ ∀(n :: a.n ≡ b(n− 2N, n−N] = b(n−N, n]),

where c(l, k] denotes the sequence [c.(l+ 1), c.(l+ 2), . . . , c.k]. A straightfor-
ward way to translate the above pointwise specification into a point-free one
is as follows (see picture .):

fold .∧̇ ◦ map.=̇ ◦ zip ◦ (tri .✁ ◦ forkN)×(tri .✁ ◦ forkN) ◦ ι △ ✁
N(.)

An informal operational interpretation of (.) is: reading from right to left,
ι △ ✁

N creates two copies of the input stream, and delays one of them N

59

60 Chapter 5. The carré problem

∧

∧

∧

=

=

=

=

fold .∧̇ map.=̇ zip tri .✁× tri .✁ fork×fork ι △ ✁
4

Figure .: An instance of (.)

times. By applying (tri .✁ ◦ forkN) to a stream c one obtains the N -tuple
(c,✁.c,✁2.c, . . . ,✁N−1.c); hence the left domain of (tri .✁ ◦ forkN)×(tri .✁ ◦

forkN) “contains” the two sequences to be compared. Then composition
with map.=̇ ◦ zip tests for equality corresponding pairs of the two sequences.
Finally, fold .∧̇ tests whether all the equality tests were successful.

Term (.) is implementable; however, it is wasteful in terms of area. Each
tri .✁ component contains O(N2) delays, and these delays are of the same
width as the width of the input stream. While the retiming laws tells us that
✁ ◦ =̇ and =̇ ◦ ✁ represent the same relation, the circuit interpretations of the
two terms are different: in the first circuit we have a boolean delay, while in
the second we have a delay over a pair of symbols, and the representation of
each symbol presumably requires more than one bit. Hence the the informal
goal in the following derivation is to transform the symbol-wide delays into
boolean delays. In the course of the calculation it will become clear that we
can also transform map.=̇ into a single =̇.

map.=̇ ◦ zip ◦ tri .✁× tri .✁ ◦ fork △ (fork ◦ ✁
N)

= { zip (.) and delay (.) }

map.=̇ ◦ tri .✁ ◦ zip ◦ fork △ (fork ◦ ✁
N)

= { retiming (.) }

61

∧

∧

∧

=

Figure .: An instance of the rhs of (.)

tri .✁ ◦ map.=̇ ◦ zip ◦ fork △ (fork ◦ ✁
N)

= { delay is deterministic, (.) }

tri .✁ ◦ map.=̇ ◦ zip ◦ fork △ (✁N
◦ fork)

= { fusion (.); zip (.) }

tri .✁ ◦ map.=̇ ◦ map.(ι×✁
N) ◦ zip ◦ fork △ fork

= { zip (.) }

tri .✁ ◦ map.=̇ ◦ map.(ι×✁
N) ◦ map.(ι △ ι) ◦ fork

= { map fusion (.); fusion (.) }

tri .✁ ◦ map.=̇ ◦ map.(ι △ ✁
N) ◦ fork

= { ι, ✁N and =̇ are deterministic, (.) }

tri .✁ ◦ fork ◦ =̇ ◦ ι △ ✁
N

A law that permits the simplification of a fold composed with a triangle is
Horner’s rule (.); the proviso

∧̇ ◦ ✁×✁ = ✁ ◦ ∧̇

holds by the properties of delay (.) and (.), hence Horner’s rule is
applicable:

fold .∧̇ ◦ tri .✁ = fold .(∧̇ ◦ ι×✁).

Summing up, we have proved

(.) = fold .(∧̇ ◦ ι×✁) ◦ fork ◦ =̇ ◦ ι △ ✁
N ,(.)

and this brings the number of required memory elements from O(N2) to
O(N). Figure . shows a picture interpretation of (.).

62 Chapter 5. The carré problem

Now, consider

a〈fold .∧̇ ◦ tri .✁ ◦ forkN〉b.(.)

The above holds if and only if, for all t,

a.t ≡ b.t ∧ b.(t− 1) ∧ . . . ∧ b.(t−N + 1);

in words, a.t is true whenever the last consecutive N inputs were true. All
that matters then is the number of consecutive true inputs. This suggests
that we may implement the above machinery with a counter. It is advan-
tageous to do so, because a counter can be realized using O(logN) memory
elements, a result that is better than what we obtained with Horner’s rule.

The left domain of tri .✁ ◦ forkN is a tuple of boolean stream, and what we
are interested in is the number of consecutive true values from the left at any
time t. Let’s define then cntn for all n-tuples of booleans as

cntn.(x0, . . . , xn−1) = ↑
(
k :: ∀(i : 0≤ i < k : xi ≡ true)

)
,

where l ↑m is the maximum of l and m. Function cntn counts the number of
consecutive true values from the left in an n-tuple. Clearly foldN .∧̇ ◦ ˙cntN

∪
◦

˙cntN = foldN .∧̇, so we can rewrite the circuit in (.) to

fold .∧̇ ◦ ˙cntN
∪

◦ ˙cntN ◦ tri .✁ ◦ forkN .(.)

Now, fold .∧̇ ◦ ˙cntN
∪ is just (˙=N). For ˙cntN ◦ tri .✁ ◦ forkN we reason:

b〈 ˙cntN ◦ tri .✁ ◦ forkN〉a

≡ { definitions, lifting }

∀
(
t :: b.t = ↑

(
k :: ∀(i : 0≤ i < k : (✁i.a).t ≡ true)

))

≡ { calculus; l ↓m is the minimum of l and m }

∀
(
t : a.t ≡ false : b.t = 0

)

∧ ∀
(
t : a.t ≡ true : b.t = (b.(t− 1) + 1)↓N

)

≡ { defining l +N m= (l +m)↓N }

b〈(K0
▽((˙+N1) ◦ ✁))σ〉a

The components in the last circuit can be implemented in O(logN) area.
The reduction in area is due to the change in representation defined by ˙cntN :
while an N -tuple requires N wires, a number between 0 and N can be rep-
resented with just ⌈logN⌉ binary digits.

5.0. Conclusions 63

=▽

+41

K0

=4

Figure .: An instance of the rhs of (.)

Summarizing, we have proved that

(.) = (˙=N) ◦ (K0
▽((˙+N1) ◦ ✁))σ ◦ =̇ ◦ ι △ ✁

N .(.)

Figure . shows an instance of the final design.

5.0 Conclusions

We have shown how to use Ruby to solve a simple circuit derivation prob-
lem. It is interesting to compare our derivation with the one by Rem [45].
While they are rather different, the results when interpreted as circuits are
similar. Our calculations are slightly longer, but straightforward. The main
invention is the introduction of ˙cntN , which is suggested by an analysis of
the operational meaning of the circuit. The rest of the derivation is guided
by the shape of the formulae.

The introduction of ˙cntN allows us to break the derivation in two parts; this
is an advantage of the algebraic style of reasoning.

One other advantage of our derivation is that the circuit terms we obtain are
much smaller than Rem’s corresponding CSP-like programs. It appears that
Ruby is able to represent some circuits very compactly.

The carré derivation does not need the full generality of relations; all relations
we use are deterministic, with the exception of ˙cntN

∪, since ˙cntN is deter-
ministic, but not injective. Should we want to recast the whole calculation
in functional terms, we’d only have to treat the proof of foldN .∧̇ ◦ ˙cntN

∪
◦

˙cntN = foldN .∧̇ as “special”. Since all the information flow in the circuit
is from right to left, it is straightforward to interpret the circuit we obtain
as a functional program. But restricting our calculations to functions would
lead to a dead end, since in most circuits information flows in two directions,

64 Chapter 5. The carré problem

so they are not functional programs; this is demonstrated by the appearance
of contra-flow in the regular language recognizers of chapter 7.

Chapter 6

A round-robin scheduler

6.0 Introduction

Kropf [29] has collected together a number of problems that can be used as
benchmarks for hardware verification, one of which is a bus arbiter. The
function of the bus arbiter is to assign the use of a shared resource on each
clock cycle to one out of N subsystems that may want to use it, and in such
a way that no subsystem is denied access forever.

In this chapter we consider the problem of constructing, rather than verifying,
a component of this arbiter.

6.1 The specification

A bus arbiter is a device that should assign the use of a resource at each
clock cycle to at most one out of N subsystems that may want to use it,
and it should do it so that no subsystem is denied access forever. More
specifically, a bus arbiter is a circuit that maps a stream of N tuples of
booleans, representing requests to use the resource, to a stream of N tuples
of booleans, representing acknowledgements that the resource may be used.

Note that we are not interested in dealing with metastability problems.
Metastability is an effect that may occur whenever a signal is sampled asyn-
chronously; what may happen is that the signal floats in a state that cannot
be interpreted as a logical “true” or as a logical “false”. It should be clear
that this effect cannot be modelled within the framework of this thesis. What
we call “wire” here is a mathematical abstraction of physical wires.

65

66 Chapter 6. A round-robin scheduler

Let us call the input stream req and the output stream ack . It is easier to
think of BN as a subset of {0,. . . , N−1} , so we write n∈ req .t to mean that
the n-th component of req is high at time t. The specification of the arbiter,
as given by Kropf [29], is then:

0. No two output wires are asserted simultaneously: for each instant t,

| ack .t | ≤ 1 .

1. Acknowledge is not asserted without request:

ack .t⊆ req .t .

2. Every persistent request is eventually acknowledged: there is no pair
(n, t) such that

∀(t′ : t≤ t′ : n∈ req .t′ ∧ n 6∈ ack .t′) .

Kropf himself suggests an implementation. The arbiter should normally grant
acknowledge to the request that is lowest in index, unless there is some other
wire that has been asserting its request for more than a set amount of time, in
which case the latter wire is granted instead. This is accomplished as follows:
at any given moment there is a privileged wire. For simplicity, we may take
t mod N to be the privileged wire at any time t. If wire n is privileged, and is
asserting a request, and it was asserting its request the previous time it was
privileged, then it is acknowledged. This way any wire will be acknowledged
in less than 2N clock cycles. In the limit case where all requests are asserted
at all times, they will be granted in round-robin fashion, i.e., each wire is
granted once every N clock cycles.

One way to implement this arbiter is to construct two modules, called for in-
stance LT and RR, the first one granting request to the lowest index asserted
in its input, and the second one implementing the round-robin algorithm.
The first module is combinational, while the second one has state. Module
LT simply returns the lowest numbered signal that is asserted.

In the rest of this chapter the focus is on the development of the round-robin
scheduler, RR. Suppose ✁

N is a function that delays an input stream by N
clock cycles. That is,

(✁N .b).t = b.(t−N) .

6.2. Design Steps 67

Then, viewing RR as a binary relation between output ack and input req ,
its specification is

ack〈RR〉req ≡ ∀(t:: ack .t = {t mod N} ∩ req .t∩ (✁N .req).t) .

The above can be interpreted as follows: at each instant t, the set of ac-
knowledged wires ack .t is the intersection of the set of requests at time t,
that is req .t, of the set of requests at time t − N , that is (✁N .req).t, and of
the singleton set {t mod N}, which is the singleton set of the privileged wire
number at time t. The task is to construct a circuit that implements RR as
specified above.

6.2 Design Steps

Because the development of the round robin scheduler is quite long we begin
first by giving an overview. Some of the terms used in this overview may
not be completely clear at this stage. They will however be explained in full
detail later.

The steps are as follows:

0. Low level specification.

In the first step we reformulate the given specification of RR using
tuples of booleans to represent sets. The new specification takes the
form

RR = filt ◦ intersect ◦ ι △ ✁
N .(.)

In this specification the definition of RR has been split into three com-
ponents. Reading from right to left, the first component ι △ ✁

N makes
two copies of the input stream, one of which is delayed N time units
with respect to the other. The second component intersect takes two
streams b and c, each of which represents a stream of sets and computes
the representation of b ∩̇ c (the stream whose tth element is b.t∩ c.t).
In combination with the first component, this component maps input
stream req to req ∩̇✁

N .req . Finally, the third component filt imple-
ments the function ({t mod N}∩). In this way the output value at
time t is

ack .t = {t mod N} ∩ (req .t∩ (✁N .req).t) .

68 Chapter 6. A round-robin scheduler

where the bracketing shows the order in which the individual terms are
computed.

1. Analysis of implementability.

There are two advantages of a modular specification. One is ease of
understanding, which is of considerable help to ensuring that the in-
formal requirements are correctly recorded in the formal specification.
The other is that it is much easier to identify potential inefficiencies in
the implementation. In the second step we analyse the three compo-
nents with respect to implementability.

The filt component can be implemented in O(n) area using a cyclic
multiplexer.

The problem with the implementability of RR as specified by (.) is
the component ι △ ✁

N . The area required for its implementation is
O(N2) since it consists of N delays each with arity N . The conclusion
of this phase is thus that it is this component on which we should focus
our attention.

2. Goal.

Having analysed the source of inefficiency in (.) we can proceed to
formulating the goal. Specifically, we wish to construct memory devices
ff k,N such that

RR = filt ◦ intersect ◦ ι △ map.(k : 0≤ k <N : ff k,N)(.)

and such that each such component has at most one delay element. In
this way the O(N2) area required by the component

✁
N

is replaced by the O(N) area required by the component

map.(k : 0≤ k <N : ff k,N) .

(The components are called “flip-flops” because this is a name that is
commonly given to memory elements.)

3. Simplification of the goal.

6.3. Low Level Specification 69

The first step in the achievement of the goal is to simplify it so that it
becomes more manageable. The requirement on ff k,N is that

filt ◦ intersect ◦ ι △ ✁
N

= filt ◦ intersect ◦ ι △ map.(k : 0≤ k <N : ff k,N)

However, we show, in a series of steps, how to reduce it to

Dk,N ◦ ✁
N = Dk,N ◦ ff k,N(.)

(for each k) where

a〈Dk,N〉b ≡ ∀(t : t mod N = k : a.t = b.t) .

Note that (.) specifies the behaviour of the flip-flop ff k,N only at times
t such that t mod N = k. At other times its behaviour is unspecified.
This increased latitude (compared to the definition of ✁N whose be-
haviour is specified at all instants) is what is needed to construct an
efficient implementation of the circuit.

4. Construction of the flip-flops.

The final step is the construction of the components ff k,N . Again in a
series of steps, we calculate that

ff k,N = (✁ ◦ cmx k,N)
σ ,(.)

where cmx k,N is a cyclic multiplexer. Thus the implementation of the
flip-flop does indeed require only one delay element. The combination
of (.) and (.) is then the desired implementation of the round robin
scheduler.

This then is the overview. Let us now present the full details.

6.3 Low Level Specification

6.3.0 Bit Representation

Let us recall the original specification of the round robin scheduler. For input
stream b and output stream a,

a〈RR〉b ≡ ∀(t :: a.t = {t mod N} ∩ b.t∩ (✁N .b).t) .

70 Chapter 6. A round-robin scheduler

As is usual we choose to represent a subset of a set of N elements by a
sequence of N bits. A stream of subsets of {0, . . . , N − 1} is represented by
a N -tuple of boolean streams. Let a be such a N -tuple. We denote the k-th
stream in a by ak; the set that a represents at time t is {k | 0≤ k <N ∧
ak.t = true}.

The intersection operator on sets is then translated into the conjunction
operator mapped over the N input wires. The implementation of the relation
R where

a〈R〉b ≡ ∀(t :: a.t = b.t∩ (✁N .b).t)

is easily derived. Specifically, we have:

∀(t :: a.t = b.t∩ (✁N .b).t)

≡ { representation of sets as sequence of N bits }

∀(t, k : 0≤ k <N : ak.t ≡ bk.t ∧ (✁N .bk).t)

≡ { definition of map }

∀(t :: a.t = (mapN .∧).(b.t , (✁
N .b).t))

≡ { definition of zip }

∀(t :: a.t = (mapN .∧).((zipN .(b ,✁
N .b)).t))

≡ { lifting, definition of split and composition }

a = (mapN .∧̇ ◦ zipN
◦ ι △ ✁

N).b .

Whence

R = intersect ◦ ι △ ✁
N

where

intersect = mapN .∧̇ ◦ zipN .

See figure . on the next page for a picture interpretation of R. It follows
that

RR = filt ◦ intersect ◦ ι △ ✁
N(.)

where the component filt must satisfy the requirement:

a〈filt〉b ≡ ∀(t :: a.t = {t mod N} ∩ b.t) .

6.3. Low Level Specification 71

∧

∧

∧

∧

Figure .: An instance of R

6.3.1 Implementing The Filter Component

With the exception of filt , it is clear that all components in (.) can be
implemented directly. In this section we consider how filt is implemented.

In terms of the bit representation filt must satisfy:

a〈filt〉b ≡ ∀(t, k : t mod N = k : ak.t = bk.t)
∧ ∀(t, k : t mod N 6= k : ak.t = false)

(.)

In software, filt would be implemented with a straightforward if-then-else
statement. In Ruby the full generality of an if-then-else statement is typically
shunned, since it enjoys few useful algebraic properties (see Jones [24]). In
this case, however, the full generality is not needed and the component can
be implemented using a cyclic multiplexer cmx k,N .

Comparing the definition of filt with that of cmx k,N it is clear that filt can
be implemented by pairing each of the N bits of the input stream with a
stream of false bits and passing each pair of bits to the corresponding cyclic
multiplexer. That is,

filt = map.(k : 0≤ k <N : cmx k,N ◦ ι △ KF) .(.)

where KF is a circuit that ignores its input and constantly outputs the value
F (false).

72 Chapter 6. A round-robin scheduler

This concludes this section. The combination of (.) and (.) is a correct
implementation of the round-robin scheduler:

RR = map.(k : 0≤ k <N : cmx k,N ◦ ι △ KF) ◦ mapN .∧̇ ◦ zipN
◦ ι △ ✁

N .

6.4 Efficiency Analysis and the Goal

One advantage of a modular specification like (.) is that it simplifies the
task of identifying potential inefficiencies. We need only examine each com-
ponent in turn.

Assuming that a cyclic multiplexer has an efficient implementation, it is clear
that the two components filt and intersect have efficient implementations.
The bottleneck in the implementation is in fact the component ✁

N . Note
that the input arity of this component is N since the input stream is in fact
a stream of N bits. The total area required for its implementation is thus
O(N2). On the other hand, it seems plausible that an O(N) implementation
can be found for RR (although not the component ✁

N) since at any stage
onlyN bits need to be recorded. Specifically, at any time t it suffices to record
the value of the kth input bit only at the last time that it was privileged.

We can express our intuition about the memory component that is required
as follows. For each input bit k we replace the ✁

N component by a memory
element ff k,N , “ff” standing for “flip-flop” (this being the name often given
by circuit designers to memory elements). That is, we wish to design ff k,N

such that

filt ◦ intersect ◦ ι △ ✁
N

= filt ◦ intersect ◦ ι △ map.(k : 0≤ k <N : ff k,N) .

Moreover, the implementation of the flip-flops should involve at most one
delay element.

6.5 Simplifying the Goal

In the following discussion it will be useful to introduce the name specRR for
the term

filt ◦ intersect ◦ ι △ ✁
N

6.5. Simplifying the Goal 73

and impRR for the term

filt ◦ intersect ◦ ι △ map.(k : 0≤ k <N : ff k,N) .

The goal is to derive ff k,N such that specRR = impRR. In this section we
simplify the goal by splitting it up into separate requirements for the indi-
vidual flip-flops and by eliminating the “map.∧̇” term in the definition of
intersect . We begin by splitting the goal up.

Observe first that zip ◦ ι △✁
N and zip ◦ ι △map.(k : 0≤ k <N : ff k,N) can

be written as maps. Specifically,

zipN
◦ ι △ ✁

N

= { arity of zip }

zipN
◦ N×N ◦ ι △ ✁

N

= { fusion, polymorphism of ✁: (.) }

zipN
◦ mapN .ι △ mapN .✁

N

= { (.) }

mapN .(ι △ ✁
N) .

Similarly,

zip ◦ ι △ map.(k : 0≤ k <N : ff k,N)
= map.(k : 0≤ i <N : ι △ ff k,N) .

Substituting these terms back into the definitions of specRR and impRR, we
conclude that ff k,N must satisfy

map.(k :: cmx k,N ◦ ι △ KF) ◦ map.∧̇ ◦ map.(ι △ ✁
N)

= map.(k :: cmx k,N ◦ ι △ KF) ◦ map.∧̇ ◦ map.(k :: ι △ ff k,N) .
(.)

Thus, by map fusion and introducing the abbreviation ϕk,N where, by defi-
nition,

ϕk,N = cmx k,N ◦ ι △ KF ,(.)

we have obtained individual requirements on each flip-flop. Specifically, we
require that

∀(k : 0≤ k <N : ϕk,N ◦ ∧̇ ◦ ι △ ✁
N = ϕk,N ◦ ∧̇ ◦ ι △ ff k,N) .(.)

In order to remove the spurious conjunction we observe that ϕk,N satisfies

74 Chapter 6. A round-robin scheduler

a〈ϕk,N〉b ≡ ∀(t : t mod N = k : a.t = b.t)

∧ ∀(t : t mod N 6= k : a.t = F) .

From this definition, using the fact that F ∧ F = F , it is easy to see that

ϕk,N ◦ ∧̇ = ∧̇ ◦ ϕk,N×ϕk,N .(.)

(We leave the proof to the reader.) Hence we may rewrite (.): for all k,
0≤ k <N :

ϕk,N ◦ ∧̇ ◦ ι △ ✁
N = ϕk,N ◦ ∧̇ ◦ ι △ ff k,N

≡ { above property of ϕk,N }

∧̇ ◦ ϕk,N × ϕk,N ◦ ι △ ✁
N = ∧̇ ◦ ϕk,N × ϕk,N ◦ ι △ ff k,N

≡ { fusion }

∧̇ ◦ ϕk,N △ (ϕk,N ◦ ✁
N) = ∧̇ ◦ ϕk,N △ (ϕk,N ◦ ff k,N)

⇐ { Leibniz }

ϕk,N ◦ ✁
N = ϕk,N ◦ ff k,N .

So we have reduced the specification of ff k,N from (.) to

ϕk,N ◦ ✁
N = ϕk,N ◦ ff k,N .(.)

One further simplification is possible. Recalling the definition of ϕk,N (equa-
tion (.)):

ϕk,N = cmx k,N ◦ ι △ KF

and the definition of cmx k,N

a〈cmx k,N〉(b, c) ≡ ∀(t : t mod N = k : a.t = b.t)
∧ ∀(t : t mod N 6= k : a.t = c.t)

it is clear that cmx k,N ignores the first component of its input stream when-
ever t mod N 6= k. As a consequence, ϕk,N ignores its input stream entirely
whenever t mod N 6= k. We can express this formally by introducing the
relation Dk,N defined by

a〈Dk,N〉b ≡ ∀(t : t mod N = k : a.t = b.t) .

6.5. Simplifying the Goal 75

Two input streams are related by Dk,N whenever they are equal for all times
t such that t mod N = k; at all other times no relation between the two
streams is required. Thus the fact that cmx k,N ignores the first input stream
whenever t mod N 6= k is expressed by the equation:

cmx k,N ◦ Dk,N×ι = cmx k,N ,

and the fact that ϕk,N ignores its input stream entirely whenever t mod N 6=
k is expressed by the equation:

ϕk,N ◦ Dk,N = ϕk,N .

The verification of the former equation follows by straightforward pointwise
reasoning. The derivation of the latter equation proceeds as follows:

ϕk,N

= { definition of ϕk,N }

cmx k,N ◦ ι △ KF

= { above }

cmx k,N ◦ Dk,N × ι ◦ ι △ KF

= { fusion }

cmx k,N ◦ Dk,N △ KF

= { KF = KF ◦ Dk,N }

cmx k,N ◦ Dk,N △ (KF ◦ Dk,N)

= { (.), KF is a left condition }

cmx k,N ◦ ι △ KF ◦ Dk,N

= { definition of ϕk,N }

ϕk,N ◦ Dk,N .

Substituting this equation in (.) we obtain the final simplification to the
requirement on the flip-flops.

ϕk,N ◦ ✁
N = ϕk,N ◦ ff k,N

≡ { above }

ϕk,N ◦ Dk,N ◦ ✁
N = ϕk,N ◦ Dk,N ◦ ff k,N

⇐ { Leibniz }

Dk,N ◦ ✁
N = Dk,N ◦ ff k,N .

In summary, the requirement on ff k,N is:

Dk,N ◦ ✁
N = Dk,N ◦ ff k,N .(.)

76 Chapter 6. A round-robin scheduler

6.6 Construction of the flip-flops

From the definition of Dk,N it is clear that (.) specifies the behaviour of
ff k,N only at times t such that t mod N = k; at all other times there is
complete latitude in its behaviour. It is this latitude that we now exploit.

The component ✁
N can be seen as a memory element that stores N input

values. This is because its implementation demands that the input value at
each time t is recorded for use at time t+N after which it can be discarded.
From (.) it is clear, however, that it suffices to record the input value only
at times t such that t mod N = k, that is once every N clock beats. The
crucial step in the calculation of ff k,N below is thus to replace the function
mapping t to t−N by a function that is constant for N time intervals. A
well known example of such a function is the function mapping t to t divN .
But this function does not suffice because of the additional requirement that
the function’s value should equal t−N when t mod N = k. Noting that

(t divN)∗N = t− t mod N

is the clue to discovering the appropriate function.

Since it occurs twice in the following calculation it is useful to begin by
observing that, in general, for arbitrary function f

a〈Dk,N ◦ f〉b ≡ ∀(t: t mod N = k: a.t = (f.b).t) .

This is because

a〈Dk,N ◦ f〉b

≡ { composition and one point rule }

a 〈Dk,N〉 f.b

≡ { definition of Dk,N }

∀(t: t mod N = k: a.t = (f.b).t) .

Now,

a〈Dk,N ◦ ✁
N〉b

≡ { above, definition of ✁N }

∀(t: t mod N = k: a.t = b.(t−N))

≡ { This is the crucial step discussed above.

6.6. Construction of the flip-flops 77

We replace “t−N” using the property of

modular arithmetic:

t mod N = k ⇒ N−1 = (t−k−1) mod N }

∀(t: t mod N = k: a.t = b.(t− 1− (t−k−1) mod N))

≡ { Define ff k,N by

(ff k,N .b).t = b.(t− 1− (t−k−1) mod N) }

∀(t: t mod N = k: a.t = (ff k,N .b).t)

≡ { above }

a〈Dk,N ◦ ff k,N〉b .

We have thus calculated a functional specification of ff k,N :

(ff k,N .b).t = b.(t− 1− (t−k−1) mod N) .

The construction of an implementation for ff k,N amounts to verifying that
the function mapping t to t− 1− (t−1−k) mod N is indeed constant over
N time intervals. To be precise, we explore when (ff k,N .b).(t + 1) equals
(ff k,N .b).t:

(ff k,N .b).(t+ 1)

= { definition }

b.(t − (t− k) mod N)

= { • Suppose (t− k) mod N 6= 0 . Then

(t− k) mod N = (t− k − 1) mod N + 1 }

b.(t − ((t− k − 1) mod N + 1))

= { arithmetic }

b.(t− 1− (t−k−1) mod N)

= { definition }

(ff k,N .b).t .

Thus if (t − k) mod N 6= 0, (ff k,N .b).(t + 1) = (ff k,N .b).t. Also, if (t −
k) mod N = 0, it is obvious that (ff k,N .b).(t + 1) = b.t. So ff k,N .b is
defined by the following equations:

(ff k,N .b).(t+ 1) = (ff k,N .b).t if (t− k) mod N 6= 0
(ff k,N .b).(t+ 1) = b.t if (t− k) mod N = 0 .

78 Chapter 6. A round-robin scheduler

We recognize in these equations a combination of the cyclic multiplexer and
a feedback. Indeed,

ff k,N .b ≡ m.(b , ff k,N .b)

where

(m.(b,c)).(t+ 1) = c.t if (t− k) mod N 6= 0
(m.(b,c)).(t+ 1) = b.t if (t− k) mod N = 0 .

By (.) this equivales ff k,N =mσ where, as is obvious from the definitions
of the circuit multiplexer and delay, m=✁ ◦ cmx k,N . Thus,

ff k,N = (✁ ◦ cmx k,N)
σ .(.)

In summary, the implementation of RR we have come to is

RR = filt ◦ map.∧̇ ◦ zip ◦ ι △ map.(k : 0≤ k <N : ff k,N) ,

or equivalently, exploiting (.)

RR = filt ◦ map.∧̇ ◦ map.(k : 0≤ k <N : ι △ ff k,N) ,(.)

where ff k,N is defined by (.) and filt is defined by (.). A picture of
(.) is in figure . on the facing page.

6.7 Conclusions

In this chapter we have shown how to transform a specification of a circuit
into an implementation that is efficient in terms of area. The problem is
complicated by the presence of cyclic multiplexers. One reason why this de-
velopment is interesting is that it shows how a relatively simple optimization
can be derived, rather than verified.

6.7. Conclusions 79

cmx2,3

∧

KF

cmx2,3

cmx1,3

∧

KF

cmx1,3

cmx0,3

∧

KF

cmx0,3

Figure .: An instance of (.)

80 Chapter 6. A round-robin scheduler

Chapter 7

Regular language recognizers

In 1982, Foster and Kung presented a specialised silicon compiler that con-
structs recognizers for regular languages [18]. By “silicon compiler” a pro-
gram is meant, that produces a circuit’s description from a specification of
the circuit’s behaviour. The compiler was presented without formal justifica-
tion; indeed, they did not present a formal specification of the functionality
of the compiler. Their informal description of the functioning left much room
for alternative interpretations.

Subsequently, Backhouse [3] verified the correctness of Foster and Kung’s
compiler. His task amounted primarily to reverse engineering — trying to
discover the specification satisfied by the compiler. This resulted in the dis-
covery of an error in Foster and Kung’s construction — acknowledged by
Foster in his Ph.D. thesis [17]. Otherwise the formal calculations in Back-
house’s report were disappointingly complicated and not judged by its author
to be worthy of widespread publication.

Here we present a formal derivation of Foster and Kung’s compiler. The
complexities of the earlier verification have been overcome in two ways: by
exploiting (point-free) relation algebra rather than elementary predicate cal-
culus, and by a judicious decomposition of the design task.

Our design consists of first deriving a non-systolic implementation, that is
essentially a functional program, followed by a transformation of this design
into two different systolic versions, using standard techniques of “slowdown”,
“retiming” and “pipelining” [25].

A formal derivation of a similar compiler has also been given by Kaldewaij
and Zwaan [27], but their implementation is not systolic, in the sense that
the minimum clock period that can be assigned to their circuits is a function
of the length of the regular expression to be matched. In contrast, we present

81

82 Chapter 7. Regular language recognizers

a class of recognizers that can be assigned a clock period that is independent
of the number of sequence operators in the regular expression, although it
does depend on the number of star and choice operators; and a second class
of recognizers that can be assigned a clock period independent of the number
of choice operators, although it depends on the number of sequence and stars
operators.

This chapter is organized as follows: we first present the specification of the
problem; then a non-systolic implementation is derived, in a style similar to
functional program derivation. Then we present two different ways to trans-
form the non-systolic design into systolic ones, each of which has different
properties.

7.0 The specification

The problem we want to consider is that of formulating a syntax-directed
construction of a systolic circuit that (repeatedly) recognizes strings in the
language denoted by a regular expression. The syntax of a regular expression
is given by the BNF grammar

E ::= t | E+ E | E ;E | E∗,

where t stands for all elements of a given finite alphabet T. The language
associated with a regular expressions is defined as usual:

L.t = {t} for all t ∈ T

L.(E + F) = L.E ∪L.F
L.(E ;F) = {w · z |w ∈ L.E, z ∈ L.F}
L.(E∗) = µ(X 7→ ε∪ {w · z |w ∈ X, z ∈ L.E}).

In what follows we will identify the language associated with a regular ex-
pression with the regular expression itself; i.e., we will write E in place of
L.E. The context should make clear which one is meant.

To begin with, we will define a mapping from E to the set of circuits. Thus,
given a regular expression E, the recognizer for E maps a pair consisting of
a stream of characters (elements of T) and a stream of booleans into another
stream of booleans. The boolean input is a so-called “enable” signal. A value
of true for the enable input indicates the start of a new input sequence of

7.0. The specification 83

characters. For instance, if the expression to be recognized is t ; t, and the
set of symbols is T={t, u}, we expect the following behaviour:

output character (a) enable bit (e)
0 t 0
0 t 1
0 t 0
1 t 0
0 t 1
0 u 0
0 t 0

(We shall use 1 and 0 as shorthands for true and false). As we shall see, a
value of true for the enable input does not terminate any foregoing sequence
of characters. The following is another example of required behaviour:

output character (a) enable bit (e)
0 t 0
0 t 1
0 t 1
1 t 0
1 t 0
0 t 0

Usually we use a to range over a stream of input characters and e (for enable
bit) to range over a stream of input booleans.

In order to avoid the error in [18] we shall restrict the regular expressions to
those expressions not including a subexpression E∗ such that the empty word
is a member of E. It is well known that this does not reduce the expressive
power of regular expressions and that every regular expression can be easily
transformed to one of this form.

We denote the isomorphism between strings of booleans and left conditions
by tt (standing for “times true”) and define it by, for all integers m and n
and all streams of booleans e,

m〈tt .e〉n ≡ e.m.

For instance, if the stream e is defined for all n by e.n ≡ n> 0 ∧ (n is
odd), then tt .e= {1, 3, 5, . . .}. We also introduce a relation, mem.(E, a), on
integers for each expression E and each stream of letters a, defined by

m〈mem.(E, a)〉n ≡ a[n,m) ∈ E,

84 Chapter 7. Regular language recognizers

where a[n,m) denotes the string a.n ; a.(n + 1) ; . . . ; a.(m − 1). Note
the switch in the order of m and n. Returning to the example where
E = t ; t, we have that if the stream a is defined by a.n= t for all n, then
m〈mem.(t; t, a)〉n ≡ m = n + 2. Another way to look at mem is as a set
transformer. If we compose mem.(E, a) after a left condition, we obtain
another left condition:

mem.(E, a) ◦ (R ◦ ⊤⊤) = (mem.(E, a) ◦ R) ◦ ⊤⊤.

So if R ◦ ⊤⊤ can be interpreted as the set {0, 1, 5}, then, given a defined as
above, mem.(t ; t, a) ◦ R ◦ ⊤⊤ could be interpreted as {2, 3, 7}.

The following properties of mem are easily verified (see section (7.0.0)):

m〈mem.(t, a)〉n ≡ m= n+ 1 ∧ a.n= t for all t ∈ T

mem.(E+F, a) = mem.(E, a)∪mem.(F, a)
mem.(E ;F, a) = mem.(F, a) ◦ mem.(E, a)
mem.(E∗, a) = (mem.(E, a))∗.

(.)

These properties provide ample justification for choosing to use relation alge-
bra in the formal specification of the recognizer: the function E 7→mem.(E, a)
is a homomorphism from the algebra of expressions to the algebra of relations.

We are now ready to give the specification. We say that a circuit f recognizes

regular expression E when the following holds, for all a ∈ Stream(T) and
e ∈ Stream(B):

tt .f.(a, e) = mem.(E, a) ◦ tt .e.

A way to read this is: the set of times at which e is true, that is tt .e, is
transformed by mem into a set that must be exactly the same as the set of
times at which f.(a, e) is true.

7.0.0 Proof of the properties of mem

We prove the laws claimed in section 7.0 about mem, equations (.). Note
that we will write e.g., E+F to mean both the regular expression, and the
language it denotes. The context should make clear which one we intend.
In the remainder of this section, we let a stand for any stream of characters
from T. Letting t∈T, we have

7.0. The specification 85

m〈mem.(t, a)〉n

≡ { definition }

a[n,m)∈ t

≡ { here t denotes the language {t} }

a.n= t ∧ m= n+ 1

So much for the base case. Now, for the “choice” operator we have:

m〈mem.(E+F, a)〉n

≡ { definition of mem }

a[n,m)∈E+F

≡ { regular expressions }

a[n,m)∈E ∨ a[n,m)∈F

≡ { definition of mem, twice }

m〈mem.(E, a)〉n∨m〈mem.(F, a)〉n

≡ { union of relations }

m〈mem.(E, a)∪mem.(F, a)〉n

Similarly, for composition:

m〈mem.(E ;F, a)〉n

≡ { definition of mem }

a[n,m)∈E ;F

≡ { regular expressions }

∃(k :: a[n, k)∈E ∧ a[k,m)∈F)

≡ { definition of mem, twice }

∃(k :: k〈mem.(E, a)〉n ∧ m〈mem.(F, a)〉k)

≡ { composition of relations }

m〈mem.(F, a) ◦ mem.(E, a)〉n

Finally, for “star” we have:

mem.(E∗, a) =mem.(E, a)∗

≡ { definitions of “star” on languages and relations }

mem.(µ(X 7→ ε+X ;E), a) = µ(X 7→ I ∪X ◦ mem.(E, a))

⇐ { E 7→mem.(E, a) is universally ∪-distributive

86 Chapter 7. Regular language recognizers

so we may use µ-fusion [39] }

∀(X :: mem.(ε+X ;E, a) = I ∪mem.(X, a) ◦ mem.(E, a))

≡ { above }

true

This concludes the proof of the properties of mem.

7.1 A non-systolic recognizer

Once the specification is made clear, deriving a (non-systolic) recognizer is
easy. We begin by deriving the recognizer for a single character. We start
with a lemma:

m ∈ mem.(t, a) ◦ tt .e

≡ { composition }

∃(n :: m〈mem.(t, a)〉n ∧ n ∈ tt .e)

≡ { mem }

∃(n :: n=m− 1 ∧ a.n= t ∧ n ∈ tt .e)

≡ { one-point rule }

a.(m− 1) = t ∧ m− 1 ∈ tt .e

≡ { lifting, tt }

((=̇ t).a).(m− 1) ∧ e.(m− 1)

≡ { lifting }

(e ∧̇ (=̇ t).a).(m− 1)

≡ { delay }

(✁.(e ∧̇ (=̇ t).a)).m

≡ { tt }

m ∈ tt .(✁.(e ∧̇ (=̇ t).a)).

From this we obtain:

f recognizes letter t

≡ { definition }

∀(a, e :: tt .f.(a, e) = mem.(t, a) ◦ tt .e)

≡ { sets }

7.1. A non-systolic recognizer 87

∀(m, a, e :: m ∈ tt .f.(a, e) ≡ m ∈ mem.(t, a) ◦ tt .e)

≡ { above }

∀(m, a, e :: m ∈ tt .f.(a, e) ≡ m ∈ tt .(✁.(e ∧̇ (=̇ t).a)))

≡ { calculus }

f = ✁ ◦ ∧̇ ◦ (=̇ t)×ι.

A picture of the recognizer for t is below:

∧ =t

The character recognizer is clearly implementable, since the direction of the
delay is compatible with the direction of information through the “and”
component.

Next we consider that the expression has the form E+F for some expressions
E and F . Suppose that f , g recognize E, F respectively. Then,

h recognizes E + F

≡ { definition }

∀(a, e :: tt .h.(a, e) = mem.(E + F, a) ◦ tt .e)

≡ { mem, distributivity }

∀(a, e :: tt .h.(a, e) = mem.(E, a) ◦ tt .e ∪ mem.(F, a) ◦ tt .e)

≡ { hypothesis }

∀(a, e :: tt .h.(a, e) = tt .f.(a, e)∪ tt .g.(a, e))

≡ { tt and ∪; tt is an isomorphism }

∀(a, e :: h.(a, e) = f.(a, e) ∨̇ g.(a, e))

≡ { calculus }

h = ∨̇ ◦ f △ g.

The next case is an expression of the form E ;F for some expressions E and
F . Suppose again that f , g recognize E, F respectively. Then,

h recognizes E ;F

≡ { definition }

∀(a, e :: tt .h.(a, e) = mem.(E ;F, a) ◦ tt .e)

≡ { mem }

∀(a, e :: tt .h.(a, e) = mem.(F, a) ◦ mem.(E, a) ◦ tt .e)

88 Chapter 7. Regular language recognizers

≡ { hypothesis }

∀(a, e :: tt .h.(a, e) = mem.(F, a) ◦ tt .f.(a, e))

≡ { hypothesis }

∀(a, e :: tt .h.(a, e) = tt .g.(a, f.(a, e)))

≡ { tt is an isomorphism; calculus }

h = g ◦ ≪ △ f.

The final, and most interesting case, is when the given expression has the
form E∗ for some E. A circuit containing feedback is clearly needed. This is
the case where Foster and Kung’s original design contained an error.

The problem occurs because the defining equation of R∗, for any given
relation R, does not necessarily have a unique solution. It does have a
unique solution if R is well-founded. Anticipating the forthcoming calcu-
lation somewhat, we determine a condition for the relation mem.(E, a) to be
well-founded. For all E and a, we have:

X =mem.(E, a) ◦ X

⇒ { Leibniz }

X ◦ ⊤⊤=mem.(E, a) ◦ X ◦ ⊤⊤

≡ { pointwise interpretation; define S =X ◦ ⊤⊤,

a left condition which we regard as a set }

∀(m :: m ∈ S ≡ ∃(n :: m〈mem.(E, a)〉n ∧ n ∈ S))

≡ { • assume mem.(E, a)> ⊆N }

∀(m :: m ∈ S ≡ ∃(n : n ∈ N : m〈mem.(E, a)〉n ∧ n ∈ S))

≡ { definition of mem }

∀(m :: m ∈ S ≡ ∃(n : n ∈ N : a[n,m) ∈ E ∧ n ∈ S))

⇒ { • assume ε /∈ E }

∀(m :: m ∈ S ≡ ∃(n : n ∈ N : n<m ∧ n ∈ S))

⇒ { predicate calculus }

∀(m : m ∈ N : m ∈ S ≡ ∃(n : n ∈ N : n<m ∧ n ∈ S))

∧ S ⊆N

≡ { the natural numbers are well-founded }

S =⊥⊥

≡ { calculus, S =X ◦ ⊤⊤ }

X =⊥⊥.

7.1. A non-systolic recognizer 89

We have thus found that the assumptions ε /∈ E and mem.(E, a)> ⊆N to-
gether imply that mem.(E, a) is well-founded. The second of these assump-
tions is equivalent to postulating that the stream a is such that if a segment
of a is a word in E, then this segment is wholly contained in the non-negative
“half”. Actually, it simplifies matters if we make an even stronger postulate,
namely that for all n< 0, the value of a.n is some character not appear-
ing in E. This corresponds to asserting that the circuit is fed invalid input
until time 0. One may think of time 0 as the moment after the circuit is
reset. Given this assumption, we may henceforth just say that mem.(E, a)
is well-founded if ε /∈ E.

We are now ready to tackle the derivation of the circuit that recognizes E∗.
Assume f recognizes E. Assume also that ε /∈ E. Then

g recognizes E∗

≡ { definition }

∀(a, e, b :: b〈g〉(a, e) ≡ tt .b = mem.(E∗, a) ◦ tt .e).

Now,

tt .b = mem.(E∗, a) ◦ tt .e

≡ { mem (.) }

tt .b = (mem.(E, a))∗ ◦ tt .e

≡ { ε /∈ E, so mem.(E, a) is well-founded.

Unique extension property (.). }

tt .b = tt .e ∪ mem.(E, a) ◦ tt .b

≡ { f recognizes E }

tt .b = tt .e∪ tt .f.(a, b)

≡ { tt }

tt .b= tt .(e ∨̇ f.(a, b))

≡ { tt is an isomorphism }

b = e ∨̇ f.(a, b)

≡ { calculus; define reorg .((x, y), z) = (y, (x, z)) }

b= (∨̇ ◦ ι×f ◦ reorg).((a, e), b).

Thus

g recognizes E∗

90 Chapter 7. Regular language recognizers

≡ { above }

∀(a, e, b :: b〈g〉(a, e) ≡ b= (∨̇ ◦ ι×f ◦ reorg).((a, e), b))

≡ { feedback }

g = (∨̇ ◦ ι×f ◦ reorg)σ.

Summarising the results so far, we have derived a syntax directed translation
from E to F, which we may call τ , defined as follows:

τ.t = ✁ ◦ ∧̇ ◦ (=̇ t)×ι for all t ∈ T

τ.(E+F) = ∨̇ ◦ τ.E △ τ.F
τ.(E ;F) = τ.F ◦ ≪ △ τ.E

τ.E∗ = (∨̇ ◦ ι× τ.E ◦ reorg)σ

(.)

and such that, for all regular expressions E, τ.E recognizes E.

7.2 Making the design systolic

The circuits we have derived so far are not systolic; for instance, if one were
to build a recognizer for the string “t ; u ; v”, with t, u and v all elements of
T, the resulting circuit would be

(✁ ◦ ∧̇ ◦
˙(= v)×ι) ◦ ≪ △ (✁ ◦ ∧̇ ◦

˙(= u)×ι) ◦ ≪ △ (✁ ◦ ∧̇ ◦ (=̇ t)×ι).

It is apparent from the picture interpretation of the above circuit

∧ =v ∧ =u ∧ =t

that there is a combinational path from one side to the other of the circuit.
Even worse is the fact that for every string recognizer, this path grows in
length with the length of the string.

Our strategy for making the design systolic is in three steps. First we re-
arrange the wires, in order to introduce contra-flow in the circuits (see sec-
tion 3). Then we make the design modular, by designing a separate cell for
each operator (except for sequence, which we regard as the “basic” opera-
tor). Finally we apply retiming and slowdown, in order to make the design
as systolic as possible.

7.2. Making the design systolic 91

R R
R

term bend .R str .R str .bend .R

Figure .: Picture interpretations

As we saw in the example at the end of section 3, a standard way to make a
circuit systolic is to apply slowdown and retiming. However, the transforma-
tion shown in that example only works when the circuit has contra-flow; that
is, when there are two parallel wires where data travel in opposite directions.
Given a circuit R, a simple way to introduce contra-flow in it is to implement
bend .R instead of R, defined by

bend .R = ι×R ◦ term.

It is easy to calculate that, for all a, b and c,

(a, b)〈bend .R〉c ≡ b〈R〉a

(Note the inversion of a and b, and that c does not appear on the right side.)
We may define a transformation str (from “straighten”) by

b〈str .R〉a ≡ ∃(c :: (a, b)〈R〉c),

so that

str .bend .R=R(.)

(see figure .). Since bend is defined without mentioning delays, we have
that for all R,

slow .bend .R= bend .slow .R.(.)

Given the above discussion, we propose to change the specification so that
instead of implementing τ.E we decide to implement ρ.E instead, defined by

ρ.E = slow .bend .τ.E.

92 Chapter 7. Regular language recognizers

g
f g f

ι×g ◦ ι×(≪ △ f) ◦ term ι×g ◦ plumb ◦ ι×f ◦ term

Figure .: A simplification

Note that in the definition of ρ we foresee the need to apply slowdown; hence
the occurrence of slow . So much for the introduction of contra-flow.

Another strategy for systolic design is to break the design down into small
modules or “cells” of the same “shape”, connected in some regular way. Tak-
ing inspiration from Foster and Kung, we concentrate on sequence. Consider
the expression ρ.(E ;F). Its picture interpretation suggests a simplification:
see figure .. Let plumb be a wiring relation defined by

plumb.((x, y), z) = ((x, y), (x, z)).

It holds that

ι×(g ◦ ≪ △ f) ◦ term = ι×g ◦ plumb ◦ ι×f ◦ term(.)

(The proof is omitted. A simple pointwise calculation establishes the prop-
erty.) By defining a new function υ.E = ι× slow .τ.E, equation (.) may
be rewritten as

ρ.(E ;F) = υ.F ◦ plumb ◦ ρ.E.(.)

This result provides the insight for our next step in the process of making
the design systolic, i.e. the breaking down of the design into cells. We choose
sequence as the “privileged” operator in our design, and implement it by
means of equation (.). Every regular expression E other than a sequence
will be implemented by a “cell” equal to υ.E. For instance, the interconnec-
tion of the cells of the recognizer for the expression t∗ ; v ; (t+(u ; u)) would
have the shape shown in figure ..

What we are left to do is to come up with designs for the cells υ.(E+F),
υ.E∗ and υ.t, for all t ∈ T. Let E, F be regular expressions; we calculate
for choice:

7.2. Making the design systolic 93

+ v ∗

t

u u

t

Figure .: Cells layout for the recognizer of t∗ ; v ; (t+(u ; u))

υ.(E+F)

= { definition of υ }

ι× slow .τ.(E+F)

= { definition of τ }

ι× slow .(∨̇ ◦ τ.E △ τ.F)

= { slowing is the same as doubling delays }

ι×(∨̇ ◦ slow .τ.E △ slow .τ.F)

= { equation (.) }

ι×(∨̇ ◦ str .bend .slow .τ.E △ str .bend .slow .τ.F)

= { slow commutes with bend (.) }

ι×(∨̇ ◦ str .slow .bend .τ.E △ str .slow .bend .τ.F)

= { definition of ρ }

ι×(∨̇ ◦ str .ρ.E △ str .ρ.F)

Note that in the above derivation we have exploited the property slow .τ.E = str .ρ.E
in order to have ρ reappear. By doing so we ensure that the systolic optimiza-
tions can be applied recursively. The picture interpretation for υ.(E+F) can
be seen in figure ..

We have a similar derivation for star :

υ.E∗

= { definitions of υ, τ and slow }

ι× (∨̇ ◦ ι× slow .τ.E ◦ reorg)σ

= { slow .τ.E = str .ρ.E }

ι× (∨̇ ◦ ι× str .ρ.E ◦ reorg)σ.

94 Chapter 7. Regular language recognizers

∨

ρ.F

ρ.E

Figure .: Picture interpretation of υ.(E+F)

Finally, for any t ∈ T, we have

υ.t

= { definitions of ρ, τ and slow }

ι×(✁ ◦ ✁ ◦ ∧̇ ◦ (=̇ t)×ι)

= { retiming (.) and delays (.), (.) }

✄×(✁ ◦ ∧̇ ◦ (=̇ t)×ι) ◦ ✁.

Here we’d like to get rid of the rightmost ✁, but with the current definition
of υ we can’t. However, the circuits we generate are always of the shape
υ.E ◦ . . . ◦ ρ.F , and by the definition of ρ and equation (.) we have
✁ ◦ ρ.F = ρ.F . So it’s easy to see that dropping the delay is harmless.
Formally, all we have to do is to weaken the defining property of υ to

∀(R :: υ.E ◦ R ◦ ⊤⊤ = ι× slow .τ.E ◦ R ◦ ⊤⊤).

By this definition, the expressions for υ.(E+F) and υ.E∗ that we previously
derived are still valid, as well as equation (.); and the derivation of υ.t
becomes:

υ.t ◦ R ◦ ⊤⊤

= { above }

✄×(✁ ◦ ∧̇ ◦ (=̇ t)×ι) ◦ ✁ ◦ R ◦ ⊤⊤

= { equation (.) }

✄×(✁ ◦ ∧̇ ◦ (=̇ t)×ι) ◦ R ◦ ⊤⊤.

7.3. A choice-privileged design 95

∧
=v

∧
=u

∧
=t

Figure .: A systolic recognizer for the expression t ; u ; v

Summarizing our results, we have

ρ.(E ;F) = υ.F ◦ plumb ◦ ρ.E
ρ.E = υ.E ◦ term

υ.(E+F) = ι×(∨̇ ◦ str .ρ.E △ str .ρ.F)
υ.E∗ = ι× (∨̇ ◦ ι× str .ρ.E ◦ reorg)σ

υ.t = ✄×(✁ ◦ ∧̇ ◦ (=̇ t)×ι) for all t ∈ T.

(.)

These equations can be interpreted as a functional program that translates
regular expressions to systolic recognizers; see section 8.

7.3 A choice-privileged design

The transformation ρ that we derived in the last section generates circuits
that are very similar to the ones presented by Foster and Kung. If the regular
expression to be recognized does not contain choice or star, i.e. it is just a
string of characters, then ρ generates a fully systolic string recognizer. The
picture interpretation of the recognizer for the string t ; u ; v can be seen in
figure ..

If the regular expression does not have this very special shape the benefit is
diminished. Consider for instance expressions of the form

E1 +E2 +E3 + . . .

The translation of such expressions has the form shown in figure ., and
here we have combinational paths whose length depends on the number of
occurrences of “+” in the expression. The design presented in section 7.2
is well-optimized for expressions that contain many more “;” operators than

96 Chapter 7. Regular language recognizers

∨

∨

ρ.H

ρ.G

∨

ρ.F

ρ.E

Figure .: A composition of choice cells: ρ.(E+F +G+H)

“+”. This problem is also present in Foster and Kung’s work; they simply
fail to observe it.

In this section we start again from the τ design of section 7.2 and show that if
we choose “choice” as the privileged operator, we arrive at a totally different
design.

The first step is to decide on a standard “shape” for the cells. The translation
for τ.(E+F +G) is

∨̇ ◦ τ.E △ (∨̇ ◦ τ.F △ τ.G).

7.3. A choice-privileged design 97

The corresponding picture is

∨

τ.E

∨

τ.F

τ.G

A way to make this structure modular is suggested by the following picture,

∨

τ.E

∨

τ.F

∨

τ.G(.)

where we may see a composition of three cells of the same shape.

Note that the retiming transformation that we used in section 7.2 does not
work here. In fact, even if we interpret the design (.) as having contra-
flow (the lower wire is not constrained, so we may decide that information
flows from left to right on the lower wire), we are not able to design a systolic
recognizer for expressions of the kind t0 + t1 + · · ·+ tn, where for all i, ti ∈ T.
In fact, in that case we’d have a circuit of the following shape:

∨

R

∨

S

∨

T

Applying slowdown and retiming, like we did in the section 7.2, would result
in a design that cannot be implemented:

∨

R

∨

S

∨

T

This circuit cannot be implemented because the antidelays in the upper wire
are driven in the wrong direction.

98 Chapter 7. Regular language recognizers

This fact is not surprising: if we were able to design a recognizer for choice
with zero latency time and a response time that does not depend on the
number of choices, that would mean we are able to design an “or” gate with
unbounded fan-in; and it is well known that no such component exists. For
this reason we are forced to try a different design.

Formally, we define a cell for choice as

κ.E = cc.τ.E,

where

cc.R = ι×∨̇ ◦ rsh ◦ (ι △ R)×ι.

It will be useful later to generalize the definition of cc to

ccn.R = ι×∨̇ ◦ rsh ◦ (✁n
△ R)×✁

n.

Note that cc.R= cc0.R. The relation cc.R can be proved to be the least
relation satisfying

(a, b)〈cc.R〉(a, c) ≡ ∃(d :: b= c∨̇d ∧ d〈R〉a),(.)

and from this we obtain

(a, b)〈κ.E〉(a, c) ≡ b = (τ.E).a ∨̇ c.(.)

Here wire a is actually a pair of wires (the ones we call a and e in section 7.0).
It’s easy to construct a left inverse of cc: we try to derive a function ccli such
that for all R,

ccli .cc.R=R.(.)

We calculate:

a〈ccli .cc.R〉b

= { • assume ccli .X = S ◦ X ◦ T , for some S and T }

a〈S ◦ cc.R ◦ T 〉b

= { calculus }

∃(c, d, e :: a〈S〉(c, d) ∧ (c, d)〈cc.R〉(c, e) ∧ (c, e)〈T 〉b)

= { (.) }

7.3. A choice-privileged design 99

∨

R R
KF

∨

R

KF

cc.R ϑ.R ϑ.cc.R

Figure .: cc and ϑ

∃(c, e, f :: a〈S〉(c, f ∨̇e) ∧ f〈R〉c ∧ (c, e)〈T 〉b)

= { • choose S =≫ }

∃(c, e, f :: a= f ∨̇e ∧ f〈R〉c ∧ (c, e)〈T 〉b)

= { • assume (x, y)〈T 〉z⇒ y = false }

∃(c :: a〈R〉c ∧ (c, false)〈T 〉b)

= { • assume (x, y)〈T 〉z⇒ x= z }

a〈R〉b.

It is easily verified that the two assumptions on T can be satisfied by choosing

T = ι×KF ◦ ≪∪.

In summary, equation (.) holds by defining

ccli .R = ≫ ◦ R ◦ ι×KF ◦ ≪∪.

Since we chose the cell shape κ in order to privilege choice, we expect to be
able to express κ.(E+F) in a compact way in terms of κ.E and κ.F. In fact
we have, for all a, b, c and d:

(a, b)〈κ.(E+F)〉(a, c)

≡ { interpretation of κ: (.) }

b = (τ.(E+F)).a ∨̇ c

≡ { definition of τ }

b = (∨̇ ◦ τ.E △ τ.F).a ∨̇ c

≡ { calculus }

b = (τ.E).a ∨̇ (τ.F).a ∨̇ c

100 Chapter 7. Regular language recognizers

∨

κ.F
KF

κ.E
KF

Figure .: The cell for sequence

≡ { single-point rule }

∃(d :: b = (τ.E).a ∨̇ d ∧ d = (τ.F).a ∨̇ c)

≡ { (.) }

∃(d :: (a, b)〈cc.τ.E〉(a, d) ∧ (a, d)〈cc.τ.F 〉(a, c))

≡ { calculus }

(a, b)〈κ.E ◦ κ.F 〉(a, c).

Hence we have found, as expected, that

κ.(E+F) = κ.E ◦ κ.F.(.)

All we are left to do is to find a design for the cells for sequence, star and
the character recognizer. We calculate:

κ.E∗

≡ { definition }

cc.τ.E∗

≡ { definition }

cc.(∨̇ ◦ ι× τ.E ◦ reorg)σ

≡ { (.) }

cc.(∨̇ ◦ ι× ccli .κ.E ◦ reorg)σ.

This calculation boils down to opening up definitions. We exploit (.)
to make κ reappear, so that the transformation is applied recursively. In a
similar way we obtain the cell for sequence:

κ.(E ;F) = cc.(ccli .κ.F ◦ ≪ △ ccli .κ.E).(.)

7.3. A choice-privileged design 101

The character recognizer is obtained directly from the definition: for t ∈ T,

κ.t= cc.τ.t.

This concludes the first part of our task, that is finding a common “shape”
for the implementation of all regular expression operators. The definitions
so far are summarized below:

κ.t = cc.τ.t for all t ∈ T

κ.(E+F) = κ.E ◦ κ.F
κ.(E ;F) = cc.(ccli .κ.F ◦ ≪ △ ccli .κ.E)
κ.E∗ = cc.(∨̇ ◦ ι× ccli .κ.E ◦ reorg)σ

and

cc.R = ι×∨̇ ◦ rsh ◦ (ι △ R)×ι
ccn.R = ι×∨̇ ◦ rsh ◦ (✁n

△ R)×✁
n

ccli .R = ≫ ◦ R ◦ ι×KF ◦ ≪∪.

*
*

*

We now apply pipelining to the “κ” design. As usual, we suppose we have
implementations that correspond to κ.E and κ.F , for arbitrary regular ex-
pressions E and F ; we also suppose that some pipelining has been applied
to them, so that they have arbitrary extra latency time. We model this by
assuming our building blocks are ✁n

◦ κ.E and ✁
m

◦ κ.F , for some n,m ≥ 0.

Let’s begin with choice:

κ.(E+F)

= { (.) }

κ.E ◦ κ.F

= { retiming }

✄
n+m+1

◦ (✁n
◦ κ.E) ◦ ✁ ◦ (✁m

◦ κ.F).

This proves that given that R implements κ.E with n extra latency, and S
implements κ.F with m extra latency, then R ◦ ✁ ◦ S implements κ.(E+F)
with n+m+ 1 extra latency.

102 Chapter 7. Regular language recognizers

∨

τ.E

∨

τ.F

Figure .: The pipelined cell for choice

We continue with sequence. Recall that, by the laws of delays,

ι×✄ = ✄ ◦ ✁×ι and ι △ ✄ = ✄ ◦ ✁ △ ι.(.)

By retiming, we also obtain that for all R and ✸ ∈ {✁,✄},

✸ ◦ ccli .R = ccli .(✸ ◦ R).(.)

We will need a lemma that allows us to “pull out” an antidelay from the
scope of cc. We derive such a lemma below; the calculation is performed in
very small steps to reduce the risk of errors:

cc.(✄n
◦ R)

= { definition }

ι×∨̇ ◦ rsh ◦ (ι △ (✄n
◦ R))×ι

= { fusion }

ι×∨̇ ◦ rsh ◦ (ι △ ✄
n

◦ ι×R)×ι

= { (.) }

ι×∨̇ ◦ rsh ◦ (✄n
◦ ✁

n
△ ι ◦ ι×R)×ι

= { fusion }

ι×∨̇ ◦ rsh ◦ (✄n
◦ ✁

n
△ R)×ι

= { (.) }

ι×∨̇ ◦ rsh ◦ ✄
n

◦ (✁n
△ R)×✁

n

= { retiming }

✄
n

◦ ι×∨̇ ◦ rsh ◦ (✁n
△ R)×✁

n

= { definition }

✄
n

◦ ccn.R.

7.3. A choice-privileged design 103

Hence,

cc.(✄n
◦ R) = ✄

n
◦ ccn.R.(.)

Suppose now that R implements κ.E with n extra latency, and S implements
κ.F with m extra latency:

R = ✁
n

◦ κ.E and S = ✁
m

◦ κ.F.

By the properties of delays, this is the same as

✄
n

◦ R= κ.E and ✄
m

◦ S = κ.F.(.)

Given these preliminaries, we calculate for sequence:

κ.(E ;F)

= { (.) }

cc.(ccli .κ.F ◦ ≪ △ ccli .κ.E)

= { (.) and (.) }

cc.(ccli .κ.F ◦ ≪ △ (✄n
◦ ccli .R))

= { (.) }

cc.(ccli .κ.F ◦ ✄
n

◦ (✁n
◦ ≪) △ ccli .R)

= { (.), retiming }

cc.(✄n+m
◦ ccli .S ◦ (✁n

◦ ≪) △ ccli .R)

= { (.) }

✄
n+m

◦ ccn+m.(ccli .S ◦ (✁n
◦ ≪) △ ccli .R).

We have thus shown that given that R implements κ.E with n extra latency,
and S implements κ.F with m extra latency, then ccn+m.(ccli .S ◦ (✁n

◦

≪) △ ccli .R) implements κ.(E ;F) with n+m extra latency. Unfortunately,
it’s not possible to apply the same reasoning to the cell for star. This is
because it’s not possible to take an anti-delay out of the scope of a feedback.
The “closest thing” that holds is the following theorem:

(✄ ◦ R)σ = ✄ ◦ (R ◦ ι×✄)σ.

The proof is:

104 Chapter 7. Regular language recognizers

∨

S
KF

R
KF

n+m

n

n+m

n+m

Figure .: The pipelined cell for sequence

(✄ ◦ R)σ

= { loop-feedback }

(ι △ ι ◦ ✄ ◦ R)̟

= { delays, fusion }

(✄×✄ ◦ ι △ ι ◦ R)̟

= { loop fusion }

✄ ◦ (ι×✄ ◦ ι △ ι ◦ R)̟

= { loop leapfrog }

✄ ◦ (ι △ ι ◦ R ◦ ι×✄)̟

= { loop-feedback }

✄ ◦ (R ◦ ι×✄)σ.

We cannot isolate the antidelays out of a circuit with feedback; hence such
a circuit cannot be implemented, given that we expect data to flow from
the right to the left. For this reason, the pipelining transformation cannot
be applied recursively to the circuit for star. Of course the circuit will still
behave correctly; but we have to give up the full systolization of the recognizer
for an expression that has a choice operator within the scope of a star.

Summarizing our results, we have a function that produces, for every regular
expression, the extra latency of the pipelined recognizer:

ℓ.t = 0 for all t ∈ T

ℓ.(E+F) = ℓ.E + ℓ.F + 1
ℓ.(E ;F) = ℓ.E + ℓ.F
ℓ.E∗ = 0,

7.4. Some considerations 105

and a function that produces the pipelined recognizer itself:

η.t = κ.t for all t ∈ T

η.(E+F) = η.E ◦ ✁ ◦ η.F
η.(E ;F) = ccn+m.(ccli .κ.F ◦ (✁n

◦ ≪) △ ccli .κ.E)
with n,m = ℓ.E, ℓ.F

η.E∗ = κ.E∗.

(.)

7.4 Some considerations

In the usual squiggol style, one works with syntactic terms that can be in-
terpreted as both mathematical functions, and computer programs. What
one does then is to take a term and transform it according to rules that do
not change the functional interpretation, but may — and should — change
the efficiency of the term interpreted as a program. What we did in the last
section is very similar, except that instead of working with a simple term,
we had to improve the efficiency of a term-valued function, τ . This is how
functions like ρ come into being. Its characterisation as a function from re-
lations to relations is simple; but it is not as easy to specify formally what
we expect ρ to do as a function from syntactical terms to syntactical terms.
What we had in mind as we worked is “apply the useful transformations as
thoroughly as possible.” It could prove fruitful to apply further work to de-
velop notations for cleanly specifying term transformation functions of this
kind.

An interesting element of the τ derivation is the use of the unique extension
property (uep) for regular languages in the case of a starred expression. The
fact that the subexpression should not include the empty word is a necessary
and sufficient condition for application of the uep. This is where the error
occurred in Foster and Kung’s original paper. The non-uniqueness of solu-
tions to certain equations in relation calculus corresponds to indeterminate
behaviour in the corresponding circuits.

106 Chapter 7. Regular language recognizers

Chapter 8

Simulation with the Ruby
interpreter

To demonstrate that the designs presented in chapters 5, 6 and 7 are detailed
enough to be implemented, we present here an example implementation for
the Ruby interpreter written by Hutton, and documented in his thesis [23].

The implementation shown here is straightforward, and contains no new
technical details; however, it bears some interest from a practical point of
view.

The interpreter is written in an variant of ML (see e.g., [43]) called “Lazy
ML” It can be found as of 1997 by ftp at ftp.cs.chalmers.se, in directory
/pub/misc/ruby. The language Lazy ML has been superseded by Haskell;
hence it is no longer widely available. Again, as of 1997 one can find it by ftp
at ftp.cs.nott.ac.uk, directory /haskell/chalmers/old, or by looking
for the files lml-0.999.7.doc.tar.gz and lml-0.999.7.src.tar.gz with
Internet indexing services such as ftpsearch.

The next section gives a short introduction to the Ruby interpreter. After
that, section 8.1 introduces a few basic definitions that make the interpreter’s
syntax more consistent with the rest of the thesis. In sections 8.2, 8.3 and 8.4,
the τ , ρ and η designs from chapter 7 are implemented with the Ruby inter-
preter.

107

108 Chapter 8. Simulation with the Ruby interpreter

8.0 Introduction to the interpreter

8.0.0 The language

As is common in ML implementation of interpreters, there is no parser.
The user program is not represented by text; one uses the underlying ML
system to build data structures that have the correct type. In this case, the
type of Ruby terms. This is particularly advantageous to us, since what we
derived in the previous sections are functions from the datatype of regular
expressions to the datatype of Ruby programs. These functions can be nicely
implemented in ML.

There are of course a few differences between the mathematical presentation
of the designs and their implementation. Mainly these differences have to
do with the implementation of delays. While our calculus is essentially un-
typed, so that one can place a delay in front of an arbitrary wire, Hutton’s
interpreter distinguishes between integer-valued delays and boolean-valued
delays. Moreover, delays to be placed on arbitrary collections of wires must
be constructed with the product combinator.

While until now we pretended that a circuit’s execution persists indefinitely
in the future as well as in the past, in reality a circuit is switched on at
some moment. Therefore, delay elements must either be initialized with
some definite value, or left uninitialized (i.e., their value is undefined at time
0.) Hutton’s interpreter chooses the former, thus forcing one to specify the
initialization value of all delays.

A secondary difference is that the crisp mathematical notation must be re-
placed by the ascii-based syntax of ML programs. There is little we can
do about this, short of writing a syntax-directed graphical editor for Ruby-
generating programs. Furthermore, there are differences between our style of
relation calculus and standard Ruby, mainly because in Ruby input is gener-
ally thought of as coming from the left; we embrace the opposite convention.
For this reason we had to redefine the primitive components such as logic
gates.

The composition operator is written “..”; for instance, where we usually
write R ◦S, here we must write R .. S. The reason for this choice of symbol
is that the symbol . (a single dot) is already defined in ML to stand for
function composition.

The product is written “!!”: instead of R × S, we have R !! S. Again,
the reason for this choice of symbol is that the symbol || has a predefined
meaning in Lazy ML.

8.1. Preliminaries 109

The converse of a circuit “R” is written “inv R”. The identity circuit is
“rid” (for “Ruby identity”). The repeated composition of a circuit R, that
is Rn, is written “repeat n R”. There is a special notation for defining wiring
relations. For instance, the Ruby relation swap would be defined as

wiring (list [wire 1; wire2], list [wire 2; wire 1])

8.0.1 Using the interpreter

The rc command (Ruby Compiler) enters a circuit in the interpreter. For
instance, after the command rc rid; the interpreter is ready to simulate the
circuit rid (that is ι). To execute a simulation one must provide a sequence of
input data, by means of the command rsim (Ruby Simulator). For instance,
after entering the identity circuit with rc, the command rsim "0;2;4" pro-
duces as output

0 - 0 ~ 0

1 - 2 ~ 2

2 - 4 ~ 4

The first column contains the clock tick number; the second and third show
the data that appear on the left and right sides of the circuit, respectively.

8.1 Preliminaries

The first thing to do is to load the Ruby simulator.

source "/home/matteo/rubysim/rubysim";

We continue with a number of definitions, aimed at bringing the syntax of
what follows as close as possible to the mathematical definitions.

These are the projection on products, corresponding to ≪ and ≫. They are
defined to be the inverse of the projection primitives offered by the inter-
preter. The reason is that in standard Ruby input is by convention thought
of as coming from the left, while we embrace the opposite convention.

let outl = (inv p1);

let outr = (inv p2);

110 Chapter 8. Simulation with the Ruby interpreter

The split operator, R △ S:

let split r s = (r !! s) .. (inv fork);

The feedback operator, Rσ; it is built by means of

let rrr = wiring (list [list [wire 1; wire 2]; wire 2],

wire 1);

let feedback r = fork .. (r !! rid) .. rrr;

A few boolean gates:

let ANDG = (inv AND);

let ORG = (inv OR);

The character comparator (the one written ˙(= t) in the mathematical pre-
sentation)

let EQL t = (inv EQ) .. (first (icon t)) .. p2;

As discussed above, here are several delay definitions, one for each type of
wire that we need: boolean, integer, and the (a, e) bus.

let bdelay = (inv (bdel false));

let idelay = (inv (idel 0));

let busdelay = idelay !! bdelay;

The following are the definitions of repeated delays: bdelays n corresponds
to ✁

n, on a boolean wire. The other definitions are for integer and “bus”
delays.

let rec bdelays n = repeat n bdelay;

let rec idelays n = repeat n idelay;

let rec busdelays n = repeat n busdelay;

8.2 The τ design

The datatype of regular expressions. Since this Ruby interpreter does not
support the type of “characters”, we’ll use integers in place of them.

let rec type E = char Int + choice E E + seq E E + star E;

8.2. The τ design 111

From now to the end of this section, we will identify the characters t, u, v, z
with the numbers 19,20,21,25 respectively (these are the ordinals of the letters
t,u,v,z in the alphabet.)

let t = 19

and u = 20

and v = 21

and z = 25;

The wiring relation reorg is defined by

let reorg = wiring (list [wire 2; list [wire 1; wire 3]],

list [list [wire 1; wire 2]; wire 3]);

The definition of τ is now easily done, based on (.):

let rec tau (char t) = bdelay

.. ANDG

.. ((EQL t) !! rid)

|| tau (choice E F) = ORG

.. (split (tau E) (tau F))

|| tau (seq E F) = (tau F)

.. (split (outl) (tau E))

|| tau (star E) = (feedback (ORG

.. (rid !! (tau E))

.. reorg))

;

We may now try a few examples. We begin with the examples in section 7.0.
The regular expression is t; t. The following command enters τ.(t; t) in the
interpreter:

rc (tau (seq (char t) (char t)));

The interpreter responds with:

Name Domain Range

EQ <0,w1> w2

112 Chapter 8. Simulation with the Ruby interpreter

EQ <0,w1> w3

AND <w2,w4> w5

AND <w3,w6> w7

D_F w5 w8

D_F w7 w4

Primitives - 4

Delays - 2

Longest path - 3

Parallelism - 20%

Directions - out ~ <in,in>

Wiring - w8 ~ <w1,w6>

Inputs - w1 w6

The output begins with a list of the “components” in the circuit, and lists
their connections. Then some statistics are printed, and then—most importantly—
the direction of data through the wires: the line Directions - out ~ <

in,in> says that the circuit accepts pair of values on the right, and outputs
single values on the left.

Let’s submit some data: the input part of the first table in section 7.0 is
submitted to the circuit with the command

rsim "19 F; 19 T; 19 F; 19 F; 19 T; 20 F; 19 F";

the number 19 here stands for character t, and T, F are the boolean true and
false. The system responds with

0 - F ~ (19,F)

1 - F ~ (19,T)

2 - F ~ (19,F)

3 - T ~ (19,F)

4 - F ~ (19,T)

5 - F ~ (20,F)

6 - F ~ (19,F)

8.2. The τ design 113

which is exactly the result we expected. The second table in section 7.0 is
reproduced with the command

rsim "19 F; 19 T; 19 T; 19 F; 19 F; 19 F";

The output is

0 - F ~ (19,F)

1 - F ~ (19,T)

2 - F ~ (19,T)

3 - T ~ (19,F)

4 - T ~ (19,F)

5 - F ~ (19,F)

Aside. A more convenient way to feed data to the interpreter is by means
of helper functions. It is not necessary to understand the definitions of
feed_data and feed_data1, as long as the examples of their use are clear.

let feed_data [] = ""

|| feed_data (i.is) =

show_int i @ " T"

@ (conc (map (\x . "; " @ show_int x @ " F") is));

For instance, the output of

feed data [t;u;v];

is the string

"19 T; 20 F; 21 F"

The variant feed_data1 keeps the enable signal true for the first two clock
ticks, instead of one.

let feed_data1 [] = ""

|| feed_data1 [i] = show_int i @ " T"

|| feed_data1 (i0.i1.is) =

show_int i0 @ " T; " @ feed_data (i1.is);

114 Chapter 8. Simulation with the Ruby interpreter

The output of

feed data1 [t;u;v];

is the string

"19 T; 20 T; 21 F"

End Aside.

Let’s now try a more substantial example, to exercise all branches of the
definition of τ . We want to recognize (t+ u)∗ ;(u+ v)∗:

rc (tau (seq (star (choice (char t) (char u)))

(star (choice (char u) (char v)))));

Here is some test data:

rsim (feed_data [t;u;t;u;v;u;v;t;u;v]);

0 - T ~ (19,T)

1 - T ~ (20,F)

2 - T ~ (19,F)

3 - T ~ (20,F)

4 - T ~ (21,F)

5 - T ~ (20,F)

6 - T ~ (21,F)

7 - T ~ (19,F)

8 - F ~ (20,F)

9 - F ~ (21,F)

The circuit correctly recognizes that all prefixes of the given string, except
the last three characters, belong to the target language. Note that we have
given a single enable impulse, at time 0.

Suppose we were to ignore the prohibition on placing an expression containing
the empty word inside the scope of a “star”; let’s say we try to compile τ.(t∗∗):

rc (tau (star (star (char t))));

The system responds with

ERROR: unbroken loop in {OR,OR,D_F,AND}

Thus theory and implementation agree that such a circuit is not correct.

8.3. The ρ design 115

8.3 The ρ design

A few auxiliary definitions:

let plumb = wiring (list [list [wire 1; wire 2];

list [wire 1; wire 3]]

, list [list [wire 1; wire 2];

wire 3]);

let str R =

let ll = wiring (wire 1

, list [wire 2;

list [wire 2; wire 1]])

in ll .. (rid !! R) .. (inv outl);

About term, the definition in section 3 cannot be accurately translated in
the language accepted by the Ruby interpreter, since the ⊤⊤ relation is not
among its primitives.

Trying to cope with this problem, we first observe that in our programs,
the value on the right side of a term is never “used”; in fact term either
appears “at the outer level” in circuits of the form R ◦ term, where we are
only interested in the values on the left domain, or in subcircuits of the shape
str .(R ◦ term), where by the definition of str the value on the right domain
of term is ignored. Hence we are free to regard the right domain of term
as an input or an output; the choice will not affect the interpretation of our
circuits.

We exploit this freedom of choice by regarding the right domain of term

as an output. Now, we’d like to be able to express that this output value
is always chosen at random. But since Hutton’s interpreter does not allow
for nondeterministic circuits (for a precise definition of what it means to be
deterministic for a Ruby program see Hutton’s thesis [23]), we arbitrarily
choose the value to be equal to the ones on the left domains. In other words,
we replace ι △ ι ◦ ⊤⊤ by ι △ ι. This choice amounts to fixing one out of all
possible behaviours; again, this choice will not affect the interpretation of
the circuits.

let term = wiring (list [wire 1; wire 1], wire 1);

We can now represent ρ and υ (upsilon). The first clause of the definition of
rho rewrites a three-places sequence so that the operators associate to the
left. This is needed for the translation to be done correctly. Apart from this,
the LML definition is very close to the original mathematical definition.

116 Chapter 8. Simulation with the Ruby interpreter

let rec rho (seq E (seq F G)) = rho (seq (seq E F) G)

|| rho (seq E F) = (ups F) .. plumb .. (rho E)

|| rho E = (ups E) .. term

and rec ups (choice E F) =

rid !! (ORG

.. (split (str (rho E))

(str (rho F))))

|| ups (star E) =

rid !! (feedback (ORG

.. (rid !! (str (rho E)))

.. reorg))

|| ups (char t) =

(inv busdelay)

!! (bdelay .. ANDG .. ((EQL t) !! rid))

;

We may now again test a few examples. Let’s start with a simple string
pattern: t; u; v.

rc (rho (seq (seq (char t) (char u)) (char v)));

The output is:

Name Domain Range

D_0 w1 w2

D_F w3 w4

EQ <21,w2> w5

D_0 w2 w6

D_F w4 w7

EQ <20,w6> w8

D_0 w6 w9

D_F w7 w10

EQ <19,w9> w11

AND <w5,w12> w13

AND <w8,w14> w15

AND <w11,w10> w16

D_F w13 w17

D_F w15 w12

8.3. The ρ design 117

D_F w16 w14

Primitives - 6

Delays - 9

Longest path - 3

Parallelism - 28%

Directions - <<in,in>,out> ~ <out,out>

Wiring - <<w1,w3>,w17> ~ <w9,w10>

Inputs - w1 w3

The “Directions” section shows that both input and output occur on the left
side of the circuits — the right side should be be ignored, as discussed above.

Since ρ is a slowed circuit, the input must be interleaved with a second
sequence (see [25]). For this execution, the second sequence is composed of
“don’t care” values.

rsim (feed_data [t;0;u;0;v;0;0;0]);

The output is:

0 - ((19,T),F) ~ (0,F)

1 - ((0,F),F) ~ (0,F)

2 - ((20,F),F) ~ (0,F)

3 - ((0,F),F) ~ (19,T)

4 - ((21,F),F) ~ (0,F)

5 - ((0,F),F) ~ (20,F)

6 - ((0,F),T) ~ (0,F)

7 - ((0,F),F) ~ (21,F)

As we said before, the values on the right domain should be ignored. The
string is recognized at step 6, as the left domain is ((0,F),T), the output
part being the second element of the pair.

To demonstrate that a slow circuit performs two separate, interleaved com-
putations, we compile the recognizer for (t; u; v) + (z; z). For clarity, we put
the whole circuit inside the scope of str, so that input occurs on the right
and output on the left side. This will make it easier to read the execution
transcript.

118 Chapter 8. Simulation with the Ruby interpreter

rc (str (rho (choice (seq (seq (char t) (char u)) (char v))

(seq (char z) (char z)))));

The tail of the output is:

Primitives - 11

Delays - 15

Longest path - 3

Parallelism - 30%

Directions - out ~ <in,in>

Wiring - w3 ~ <w4,w6>

Inputs - w4 w6

We now demonstrate the circuit with an interleaving of the sequences z; z; 0 . . .
and t; u; v; 0 . . .:

rsim (feed_data1 [z;t;z;u;0;v;0;0]);

(Note that we’ve used feed_data1 so that the enable input be asserted for
the first two clock ticks.) The output is:

0 - F ~ (25,T)

1 - F ~ (19,T)

2 - F ~ (25,F)

3 - F ~ (20,F)

4 - T ~ (0,F)

5 - F ~ (21,F)

6 - F ~ (0,F)

7 - T ~ (0,F)

8.4 The η design

We define the “shape” of a κ cell:

let ccn n R = (rid !! ORG)

.. rsh

.. ((split (busdelays n) R) !! rid);

let cc R = ccn 0 R;

8.4. The η design 119

And now the left-inverse of cc:

let ccli R = outr

.. R

.. second (bcon false)

.. (inv outl);

The κ cell:

let rec kappa (char t) = cc (tau (char t))

|| kappa (choice E F) = (kappa E) .. (kappa F)

|| kappa (seq E F) =

cc ((ccli (kappa F))

.. (split outl

(ccli (kappa E))))

|| kappa (star E) =

cc (feedback (ORG

.. (rid !! (ccli (kappa E)))

.. reorg))

;

Finally, here is the definition of the latency function ℓ, and of the pipelined
recognizer, η.

let rec ell (char t) = 0

|| ell (choice E F) = ell E + (ell F) + 1

|| ell (seq E F) = ell E + (ell F)

|| ell (star E) = 0

;

let rec eta (char t) = kappa (char t)

|| eta (choice E F) =

eta E

.. (busdelay !! bdelay)

.. (eta F)

|| eta (seq E F) =

let n = ell E

and m = ell F

in ccn (n+m) ((ccli (kappa F))

.. (split (idelays n .. outl)

120 Chapter 8. Simulation with the Ruby interpreter

(ccli (kappa E))))

|| eta (star E) = kappa (star E)

;

We compile now the pipelined recognizer for t+ (u; u) + (v; v; v).

let e = choice (char t)

(choice (seq (char u) (char u))

(seq (seq (char v) (char v)) (char v)));

rc (eta e);

The tail of the output is

Primitives - 21

Delays - 12

Longest path - 4

Parallelism - 22%

Directions - <<out,out>,out> ~ <<in,in>,in>

Wiring - <<w4,w8>,w3> ~ <<w15,w16>,w31>

Inputs - w15 w16 w31

The circuit has the shape of a κ: as the “Directions” line shows, there are two
more outputs and one more input than needed. The extra input should be
always set to true, and the extra output are just copies of the (a, e) bus. The
purpose of the cc left inverse, ccli , is to convert a κ-shape recognizer to the
usual Directions - out ~ <in,in> shape, taking care of these details.
Therefore, we compile instead

rc (ccli (eta e));

and obtain, as expected,

Primitives - 21

Delays - 12

Longest path - 4

Parallelism - 22%

8.4. The η design 121

Directions - out ~ <in,in>

Wiring - w3 ~ <w15,w16>

Inputs - w15 w16

Since this is a pipelined recognizer, we should expect some extra latency.
Executing

ell e;

we obtain 2. Hence the results will appear two clock ticks later than expected.
We demonstrate this recognizer:

rsim (feed_data [v;v;v;0;0;0;0]);

produces, as expected,

0 - F ~ (21,T)

1 - F ~ (21,F)

2 - F ~ (21,F)

3 - F ~ (0,F)

4 - F ~ (0,F)

5 - T ~ (0,F)

6 - F ~ (0,F)

and

rsim (feed_data [u;u] @ ";" @ (feed_data [t;0;0;0]));

produces

0 - F ~ (20,T)

1 - F ~ (20,F)

2 - F ~ (19,T)

3 - F ~ (0,F)

4 - T ~ (0,F)

5 - T ~ (0,F)

122 Chapter 8. Simulation with the Ruby interpreter

(Note that in step 2, the tick after the pattern u; u is input, we input the
pattern t and we assert again the enable signal. This results in the pattern t
being recognized, while the output of the previous elaboration is still in the
pipeline. the T result in step 4 signals that the pattern u; u was recognized;
the T result in step 5 is for the t pattern.)

Let’s now demonstrate our claims about combinatorial path length. We
claimed that our η design results in circuits such that the length of longest
combinational path does not increase as the number of “+” operators in the
regular expression increases. According to the compiler output, the longest
path is 4 units long. We now add more choice branches to the previous
regular expression:

let e1 = (choice e (choice (char z)

(choice (char u) (char v))));

thus e1 corresponds to the regular expression t+(u; u)+ (v; v; v)+ z+u+ v.

rc (ccli (eta e1));

the interpreter responds with

Primitives - 30

Delays - 24

Longest path - 4

Parallelism - 23%

Directions - out ~ <in,in>

Wiring - w3 ~ <w38,w39>

Inputs - w38 w39

The price for this is an increased latency: in fact, the latency of this circuit
is ell e1 = 5. On the other hand, increasing the number of “;” operators
may increase the longest path length: let e2 = (t+ (u; u) + (v; v; v)); t; t

let e2 = seq e (seq (char t) (char t));

then

rc (ccli (eta e2));

8.5. Conclusions 123

results in

Primitives - 29

Delays - 14

Longest path - 6

Parallelism - 14%

Directions - out ~ <in,in>

Wiring - w40 ~ <w5,w6>

Inputs - w5 w6

Hence the longest combinational path was 4 for e, but increases to 6 for e1.

8.5 Conclusions

We have demonstrated how the regular language recognizers from chapter 7
can be straightforwardly implemented using an existing Ruby interpreter.
While no new technical details are shown, the implementation has some
interest from a practical point of view, and it demonstrates that the circuits
that we derived are indeed implementable.

The Ruby interpreter does not have a parser, so that ML terms represent-
ing circuits must be directly constructed by the user. This fact is not an
hindrance at all; in fact it greatly helps since it makes it very easy to write
Ruby-generating programs. Our designs (.), (.) and (.) are actually
functional programs that transform regular expressions into circuits, so the
translation from the mathematical notation to the interpreter’s syntax was
very simple and direct. Although there are surface differences, as all ML
programs are ASCII strings in the end, the structure of the Ruby interpreter
implementations of tau, rho and eta is very close to the structure of the
corresponding equations.

124 Chapter 8. Simulation with the Ruby interpreter

Chapter 9

A Tangram implementation

We present a simple compiler for the language of Ruby terms into Tangram
circuits. Tangram is a language for the description of asynchronous circuits
that was devised by Van Berkel [51]. Tangram programs can be compiled to
asynchronous circuits by means of a compiler developed under van Berkel’s
supervision at the Philips research laboratories in Eindhoven. The Tangram
compiler tg2hc translates Tangram programs into an intermediate notation
called handshake circuits, which can then be interpreted (i.e., simulated) or
compiled to silicon. Tangram as a programming language is derived from
Hoare’s CSP [21]. A similar language is Handel, developed by Ian Page [41];
the main difference is that Handel is compiled to synchronous circuits.

Our compiler performs a syntax-directed translation from Ruby circuits to
Tangram. Part of it is derived from Hutton’s interpreter [23]; see chapter 8.
The compiler is written in Gofer0, a functional programming language very
similar to Haskell, devised and implemented by Mark P. Jones.

It must be noted that although Tangram is implemented in asynchronous
circuits, the Tangram programs we produce are still essentially synchronous.
So they do not take advantage of many of the features that Tangram offers.
We use Tangram as a means of showing that our designs are actually imple-
mentable; but we do not claim that the Tangram programs we produce are
the best possible Tangram implementation for the task at hand.

As is usual for this kind of experimental compiler, there is no parser. Ruby
terms are just a defined datatype, and the user is expected to construct the
element of this datatype that represents the Ruby term he wants to compile.
Besides eliminating the problem of inventing a concrete syntax and writing

0ftp://ftp.cs.nott.ac.uk/nott-fp/languages/gofer

125

126 Chapter 9. A Tangram implementation

a parser, this approach has the advantage to make it easy to write programs
that write programs, such as the definitions of τ , ρ and η in section 9.2.

The compilation is better described as a sequence of phases. In the first phase
the Ruby term is translated to a datastructure we call “Network” along with
Hutton [23]. This first phase is a modification of the code Hutton presented
in his thesis.

In the second phase, the network is checked against a number of requirements
to see that it is implementable. The requirements are:

• All wires should be assigned a type.

• All wires should be driven by at most 1 gate. Wires that are led by no
gate are inputs, and must appear in the list of external symbols.

(Ideally, we should also check that there are no cycles that are not interrupted
by delays, but presently the compiler does not enforce this. Simulating a
program with such a cycle, such as the Tangram program produced for ∧̇

σ
,

results in an error from the Tangram tools.) There is a further restriction
that our compiler enforces, that is that all output wires must be outputs of
delays. It would be possible to modify the compiler to remove this restriction,
but it would add complexity to the compiler code. If the above requirements
are met, then compilation proceeds to the third phase.

In the third phase, the network is translated to a string of characters which
happens to be a Tangram program.

Once we have obtained a Tangram program, we can simulate its operation
with the tangram simulator hcsim. We will try the same examples we tried
with the Ruby interpreter in chapter 8. We will use the definitions of τ and
ρ, from that section, (hand-)translated from Lazy ML to Gofer.

By running our examples with the Tangram simulator we have the guarantee
that our examples could be compiled to silicon, should we want to. In addi-
tion, the simulator provides a host of data about the circuit’s performance
in terms of area, speed, and energy consumption.

As an example of what the compiled Tangram programs look like, consider
the translation of (✁ ◦ ∧̇) △ (✁ ◦ ∨̇) in figure 9 on the next page All our
Tangram programs have this structure: they communicate with the external
environment through channels; there is one channel for each wire entering
or exiting the circuit. The body of the program consists of a “forever” loop
that executes two commands in sequence. The first command performs com-
munication on all the channels; the second updates the contents of all local

9.0. Tangram 127

(c1!bool & c6!bool & c2?bool & c3?bool).

begin

v1: var bool

& v2: var bool

& v3: var bool

& v6: var bool

|

forever do

c1!v1 || c6!v6 || c2?v2 || c3?v3

; <<v1,v6>>

:= begin

w0 = val v2 * v3

& w5 = val v2 + v3

| <<w0,w5>>

end

od

end

Figure .: A Tangram program example

variables, except for those that are used to hold the inputs (v2 and v3 in the
above example).

9.0 Tangram

A simple introduction to Tangram is given here, where we only mention the
language features that we use in this thesis. For a complete description of
the language, see Van Berkel [51] or Schalij [48].

A Tangram program is composed of an “external declaration”, followed by a
command. The external declaration is a list of the channels that the program
uses to communicate with the environment, together with their types. For
instance

(a?bool & b![0..127])

is an external declaration of two channels, one of which (a) is an input channel
of type boolean; (this means that the external environment writes data on

128 Chapter 9. A Tangram implementation

it.) The other channel, b, is an output channel of type [0..127], that is a
channel that the environment is supposed to read, and carries values of type
integer between 0 and 127, included.

Boolean and integer subranges are the only scalar types available in Tangram.
Among the structured types, the only one we use here is the tuple, written

<<E0, E1, E2, ..., En>>

The simplest kind of command is the assignment command, which has the
ordinary Pascal syntax and meaning. Communication commands have the
shape a?x or b!E, where a is an input channel, x is a variable, b is an output
channel and E is an expression. The effect of a communication command is
to communicate a value through a channel. The environment must “collab-
orate” for a communication to occur; no communication occurs unless the
other party is ready to participate in it. This is the usual meaning of the
communication actions in CSP.

Commands can be composed in sequence or in parallel; if C0 and C1 are
commands, then C0 ; C1 is the sequential composition, while C0 || C1 is
the parallel composition of the two commands.

The forever do command implements unbounded repetition. The syntax
for the unbounded repetition of command C is

forever do C od

The block command permits the introduction of local declarations. The
syntax is

begin D | C end

where D is a sequence of declarations, and C is a command. In our circuits,
the block command will only be used for local variables, although other kinds
of declarations are allowed.

The syntax for expressions is standard, except that the operators *, + and
unary - are overloaded. When applied to integers, they have their usual
meaning of multiplication, addition, and negation respectively. When applied
to booleans, they mean conjunction, disjunction and logic negation. It should
be noted that integer multiplication is only allowed if one of the two operands
is a constant.

9.1. The compiler in detail 129

A particular kind of expression is the block expression, which is used to
declare local names within an expression: for D a list of declarations and E

an expression,

begin D | E end

The main purpose of block expression is to factor common subexpressions, in
order to save area. This is done by means of a particular declaration called
value declaration, that is only allowed in block expressions. For instance, the
expression

f(x+y, x+y)

has the same value as

begin a = val x+y | f(a, a) end,

except that for the latter a single adder is generated, instead of two.

9.1 The compiler in detail

9.1.0 Type declarations

We begin the description of the compiler with the type declarations.

data Tree a = Nil | LEAF a | PAIR (Tree a) (Tree a)

type Wiretree = Tree Wire

type Wire = Int

Trees are defined in the usual way. A tree of wires, or Wiretree, models
what we call “arbitrary collection of wires” in section 3. We identify each
wire with a number.

data Ruby = PRIM Prim

| WIRING (Wiretree, Wiretree)

| SEQ Ruby Ruby

| PAR Ruby Ruby

| INV Ruby

130 Chapter 9. A Tangram implementation

data Prim = AND | OR | NOT | EQL | CONST TValue

| DELAY | NOP | TYPE TType | TOP

data TType = TBool | TRange Int

data TValue = TFalse | TTrue | TInt Int

A Ruby program is described by cases: it is either a primitive, or a wiring
relation, or the sequence, parallel composition or inverse of other Ruby pro-
grams.

Recall that a wiring relation captures all components that only perform a
rearrangement of wires, such as, for instance ι, fork , or rsh. Wirings are
represented by a pair of wiretrees. Essentially, a wiring represents a set of
equations on wires. For instance, fork 2 is represented by

WIRING (PAIR (LEAF 0) (LEAF 0), LEAF 0).

In actual use the numbers that appear in the definition of a wiring are con-
sistently substituted for the wire numbers of the circuits that the wiring is
connected to.

The primitives comprise all the standard combinational components such
as ∧̇, ∨̇ and =̇, the constant circuit Kn, the delay ✁, and top ⊤⊤. The
TYPE primitive is special: it is used to introduce type constraints on the
wires. When we did our calculations in the preceding chapters we could
reason about character-valued streams without specifying what the set of
characters was. But in order to obtain a Tangram implementation, we must
assign each wire a type. The only scalar types supported by Tangram are
the booleans, and (finite) subranges of the integers. All wires connected to
boolean primitives like ∧̇ are automatically assigned boolean type. But the
inputs to the =̇ primitive could be of any subrange type. The natural way
to assign a constraint in relation algebra is by composition with a monotype.
Therefore we introduce the primitive TYPE to be the monotype such that

m〈TYPE (TRange n)〉m ≡ 0≤m< 2n

and

m〈TYPE TBool〉m ≡ m = TFalse ∨ m = TTrue

(The T prefix in TBool and other identifiers stands for “Tangram” and is
meant to avoid name clashes with Gofer standard types.) A Node is a triple

9.1. The compiler in detail 131

that associates a primitive to a left and right domain, represented by two
wiretrees.

type Node = (Wiretree , Prim , Wiretree)

A Network is a triple where the first element is a list of nodes, and the second
and third element are the left and right domain of the network. The domains
are wiretrees rather than simply lists of wires because the shape information
is needed when two networks are to be combined to implement a sequential
composition. In that case it is necessary to check that the domains of the
two networks are compatible, i.e., that they have the same shape.

type Network = ([Node], Wiretree, Wiretree)

9.1.1 The main program

The structure of the compiler is evident in its top function, r2t (from “Ruby
to Tangram”).

r2t :: Ruby -> String

r2t prog =

let (net,_) = translate (prog, 0)

types = type_assign net

clnet = clean net

ws = wires clnet

und = undefs ws types

od = over_driven clnet

ud = under_driven clnet

err str = str ++ "\n" ++ pp_network clnet

in if not (null und)

then err ("*** Error: wires " ++ show und ++ " have no type constraint")

else if not (null od)

then err ("*** Error: wires " ++ show od ++ " driven more than once")

else if not (null ud)

then err ("*** Error: wires " ++ show ud ++ " internal and not driven")

else tgskel (net2tangram clnet types)

The compiler returns a string of characters, which contains a Tangram pro-
gram in case the compilation was successful, or an error message otherwise.
Compilation of a Ruby program consists of first translating it into a network
with translate; then types are assigned to all wires with type assign; hence
the network is “cleaned” by removing all nodes of type NOP (no operation)

132 Chapter 9. A Tangram implementation

or TYPE (type constraint), which are not needed in subsequent phases. Then
a number of lists of wires are built: ws is the list of all wires, und is the list
of wires that were not assigned a type. List od contains the wires that are
driven more than once; this list would be non-empty when trying to compile,
for instance, ∧̇∪

◦ ∧̇ (since the outputs of the two ∧̇ components are con-
nected together). List ud contains the wires that are not driven, and do not
occur in the external interface of the network. If all of the three lists und, od
and ud are empty, then compilation proceeds with the call to net2tangram,
which produces a compact representation of the Tangram program, to be
then expanded by tgskel into a legal Tangram program.

9.1.2 From Ruby to networks

The first step is the translation from Ruby programs to networks. This is
done by means of a modification of Hutton’s Ruby interpreter [23]. For
instance, the translation of a simple program consisting of a single “∧̇” gate
is:

? translate (PRIM AND, 0)

(([(LEAF 2,AND,PAIR (LEAF 0) (LEAF 1))],LEAF 2,PAIR (LEAF 0) (LEAF 1)),3)

(Here and in the following information typed by the user is right after the ?
prompt, while the text in the lines below are output by the gofer system.)
The second argument given to translate, a 0 in the example above, is
needed to generate wire “names”: we associate a unique number to each
wire. Function translate returns the network together with a number,
which by the definition of translate is “fresh”, i.e. it is not associated to
any wire in the network that is returned.

The above example is hard to read, and the “fresh wire” numbers are cum-
bersome for interactive use; for this reason, in the following examples the
shortcut function ppn (short for Pretty Print Network) will be used:

? ppn (PRIM AND)

[

(w2, AND, (w0, w1))

]

w2 ~ (w0, w1)

Function translate is defined by cases. For combinational gates, all cases
share a similar structure. For instance, the definition for ∧̇ is:

9.1. The compiler in detail 133

translate :: (Ruby , Wire) -> (Network , Wire)

translate (PRIM AND, x) =

let rdom = PAIR (LEAF x) (LEAF (x+1))

ldom = LEAF (x+2)

node = (ldom, PRIM AND, rdom)

in (([node], ldom, rdom), x+3)

The definition for product is recursive; it is very simple, and the only point
to note is that care must be taken to handle correctly the fresh wire numbers.

translate (PAR p0 p1, x) =

let ((l0, ld0, rd0), y) = translate (p0, x)

((l1, ld1, rd1), z) = translate (p1, y)

rdom = PAIR rd0 rd1

ldom = PAIR ld0 ld1

nodes = l0 ++ l1

in ((nodes, ldom, rdom), z)

The definition for sequential composition is more interesting, since the right
domain of the first network and the left domain of the second network must
be unified. The unification algorithms that we employ is rather simplistic,
since it fails whenever two wiretrees differ in shape (unless one of the two is
Nil). Unification, when successful, returns an Eqnset, which is defined as a
list of pair of wires. This is interpreted as a set of equations on wires.

unify :: Wiretree -> Wiretree -> Eqnset

unify t0 t1 = unify’ t0 t1 empty_eqnset

where unify’ Nil _ s = s

unify’ _ Nil s = s

unify’ (LEAF x0) (LEAF x1) s =

if x0 == x1 then s

else let t = (x0,x1):s

in unify’ (apply t (LEAF x0)) (apply t (LEAF x1)) t

unify’ (PAIR v0 v1) (PAIR w0 w1) s =

let t = unify’ v0 w0 s

in unify’ v1 w1 t

unify’ x y _ = match_error x y

“Applying” an Eqnset e to a wiretree t means to substitute for every wire w
occurring in t a canonical element of the equivalence class of w with respect
to e.

apply :: Eqnset -> Wiretree -> Wiretree

apply s = tree_map f

where f w = head (equiv_class w s)

134 Chapter 9. A Tangram implementation

The unify procedure has the property that, when applied to a pair of non-
Nil wiretrees, it produces an Eqnset that when applied to either wiretrees
produces the same result.

Having introduced unification, the translation of sequential composition can
be defined as:

translate (SEQ p0 p1, x) =

let ((l0, ld0, rd0), y) = translate (p0, x)

((l1, ld1, rd1), z) = translate (p1, y)

s = unify rd0 ld1

ldom = apply s ld0

rdom = apply s rd1

nodes = map (apply_node s) (l0 ++ l1)

in ((nodes, ldom, rdom), z)

A point to note is that this definition assumes unify always succeeds; failure
of unification is reported via Gofer’s exception reporting mechanism, function
error.

For instance, ∧̇ ◦ ∧̇ is not a well-formed program, because the right domain
of ∧̇ is a pair while the left domain is not:

? ppn (SEQ (PRIM AND) (PRIM AND))

[

(w

Program error: *** Wire structures incompatible: (w0, w1) and w5

(The partial output before the error message is due to Gofer’s lazy evaluation:
some of the output is available before the expression is fully evaluated.)
Conversely, ¬̇ ◦ ∧̇ can be nicely translated to a network:

? ppn (SEQ (PRIM NOT) (PRIM AND))

[

(w1, NOT, w4)

(w4, AND, (w2, w3))

]

w1 ~ (w2, w3)

Note how wire w4 is both on the right domain of the ¬̇ and on the left domain
of the ∧̇, thanks to unification.

The CONST primitive is translated to a network by

9.1. The compiler in detail 135

translate (PRIM (CONST n), x) =

let ldom = (LEAF x)

rdom = Nil

node = (ldom, CONST n, rdom)

in (([node], ldom, rdom), x+1)

The point to note here is that the right domain is Nil. This allows to connect
any wire shape to the right of a constant component. The TOP primitive is
translated similarly:

translate (PRIM TOP, x) = (([(Nil, NOP, Nil)], Nil, Nil), x)

9.1.3 Syntactic sugar

Typing Ruby programs in terms of the type constructors SEQ and PAR is
tedious, and the result is hard to read. For this reason some “syntactic
sugar” may help:

x r s = PAR r s

o r s = SEQ r s

andg = PRIM AND

org = PRIM OR

notg = PRIM NOT

eqlg = PRIM EQL

delay = PRIM DELAY

width n = PRIM (TYPE (TRange n))

pair n m = PAIR (LEAF n) (LEAF m)

false = PRIM (CONST TFalse)

true = PRIM (CONST TTrue)

k n = PRIM (CONST (TInt n))

With these definitions, term R×S ◦ T×U can be written more naturally as
r ‘x‘ s ‘o‘ t ‘x‘ u.

9.1.4 Assigning type information

For a network to be implementable in Tangram, it is necessary to assign
a type to all wires. Some nodes always carry their own type information;
for instance, an AND node can only be connected to boolean wires. Other
primitives have more flexible type constraints; notably the EQL primitive
where the output must be boolean, but the inputs could have any type as

136 Chapter 9. A Tangram implementation

long as both have the same type. Type assignation is then a matter of
propagating the constraints to all wires.

Function type assign has type

type_assign :: Network -> Map Wire TType

where type Map is a mapping defined, for arbitrary types a and b, by

type Map a b = [(a,b)]

(that is, a mapping is represented by a list of pairs). The definition of
type assign is then

type_assign net =

fixpoint (type_assign’ net) empty_map

where type_assign’ ([],_,_) map = map

type_assign’ (node:rest,l,r) map =

type_assign’ (rest,l,r) (type_assign_node node map)

Here fixpoint f x = limn→∞ fn x. The auxiliary function type assign node
extends a map with the type information provided by a single node; it is de-
fined by cases over the primitives.

type_assign_node :: Node -> Map Wire TType -> Map Wire TType

type_assign_node node map =

case node of

(LEAF l, AND, PAIR (LEAF r0) (LEAF r1)) ->

extend_many [l,r0,r1] TBool map

(LEAF l, OR, PAIR (LEAF r0) (LEAF r1)) ->

extend_many [l,r0,r1] TBool map

(LEAF l, NOT, LEAF r) ->

extend_many [l,r] TBool map

(LEAF l, EQL, PAIR (LEAF r0) (LEAF r1)) ->

let map’ = extend map (l, TBool)

in if defined r0 map’

then extend map’ (r1,(value r0 map))

else if defined r1 map’

then extend map’ (r0,(value r1 map))

else map’

(LEAF l, DELAY, LEAF r) ->

if defined l map

then extend map (r, (value l map))

else if defined r map

9.1. The compiler in detail 137

then extend map (l, (value r map))

else map

(_, NOP, _) -> map

(_, TOP, _) -> map

(LEAF l, CONST TFalse, Nil) -> extend map (l, TBool)

(LEAF l, CONST TTrue, Nil) -> extend map (l, TBool)

(LEAF l, CONST _, Nil) -> map

(LEAF l, TYPE t, LEAF r) -> extend_many [l,r] t map

Functions extend and extend many are used to update a map. They do not
allow redefinition of a value, i.e. a map can only be extended in a point
where it is not defined, unless the extension leaves the map unchanged. The
error message is over-specific; we are relying on the fact that extend is only
used in the context of assigning type constraints to wires in a network.

extend :: (Eq a, Eq b) => Map a b -> (a,b) -> Map a b

extend m (a,b) =

if not (defined a m)

then (a,b):m

else if value a m == b then m

else error "Type constraints incompatible"

The error message would be generated, for instance, when trying to compile
eqlg ‘o‘ (width 1) ‘x‘ (width 2). Function extend many is a shortcut:
it extends a map m with the pair (x,b) for all x in the given list.

extend_many :: (Eq a, Eq b) => [a] -> b -> Map a b -> Map a b

extend_many [] b m = m

extend_many (a:as) b m = extend_many as b (m ‘extend‘ (a,b))

9.1.5 Code generation

The Tangram programs we generate are all instances of the following schema:

(O & I).

begin

D

| forever do

IO

; L := begin V | R end

od

end

138 Chapter 9. A Tangram implementation

where I and O are lists of input and output channel declarations, respectively;
D is a list of variable declarations; IO is a parallel composition of communi-
cation statements; L is a tuple of variables, V is a list of value declarations,
and R is a tuple of value names.

An instance of this schema is represented in a compact way by a sixtuple
(i, o, l, a, n, t), where i is a list of input wires, o is a list of output wires, l is a
list of wires that have a corresponding Tangram variable, a is a list of pair of
wires that is used to generate the tuples L and R above, n is a list of nodes,
and t is a map that assigns a type to each wire. Such tuples are represented
in Gofer by the type TangramP:

type TangramP =

([Wire], [Wire], [Wire], [(Wire, Wire)], [Node], Map Wire TType)

Function net2tangram has type

net2tangram :: Network -> Map Wire TType -> TangramP

and is defined by

net2tangram net types =

let (nodes, ldom, rdom) = net

in_wires = inputs net

out_wires = outputs net

dels = sort (filter is_delay_node nodes)

del_outs = map (\(LEAF w, _, _) -> w) dels

var_wires = sort (del_outs ++ in_wires)

val_nodes = sort (nodes \\ dels)

assign = map (\(LEAF wl, _, LEAF wr) -> (wl, wr)) dels

in (in_wires, out_wires, var_wires, assign, val_nodes, types)

Finally, function tgskel transforms a TangramP sixtuple into a full Tangram
program:

tgskel :: TangramP -> String

tgskel tp =

(write_header tp) ++ "."

++ "\nbegin"

++ "\n " ++ (write_vardecls tp)

++ "\n|"

++ "\n forever do"

++ "\n " ++ (write_iocmds tp)

9.1. The compiler in detail 139

++ "\n ; " ++ (write_lhs tp)

++ "\n := begin "

++ "\n " ++ (write_valdefs tp)

++ "\n | " ++ (write_rhs tp)

++ "\n end"

++ "\n od"

++ "\nend"

In the above definition a number of auxiliary functions are used to generate
the concrete syntax for certain Tangram syntactic categories. Here is the
function that produces the external declaration part:

write_header :: TangramP -> String

write_header (inputs, outputs, _,_,_, types) =

let in_decls = map (\x -> input_decl x (value x types)) inputs

out_decls = map (\x -> output_decl x (value x types)) outputs

input_decl w typ = chan_name w ++ "?" ++ show typ

output_decl w typ = chan_name w ++ "!" ++ show typ

in

"(" ++ (cat_with " & " (out_decls ++ in_decls)) ++ ")"

The following produces the list of variable declarations:

write_vardecls :: TangramP -> String

write_vardecls (_, _, local_vars, _, _, types) =

let var_decls = map (\x -> var_decl x (value x types)) local_vars

in (cat_with "\n & " var_decls)

This function returns the parallel composition of the communication com-
mands:

write_iocmds :: TangramP -> String

write_iocmds (inputs, outputs, local_vars, _, _, _) =

let in_cmds = map f inputs

out_cmds = map g outputs

f x = chan_name x ++ "?" ++ var_name x

g x = if x ‘notElem‘ local_vars

then error "*** Output wires must be driven by delays"

else chan_name x ++ "!" ++ var_name x

in (cat_with " || " (out_cmds ++ in_cmds))

The following functions produce the strings that take the roles of V, L and
R in the above Tangram program schema, respectively.

140 Chapter 9. A Tangram implementation

write_valdefs :: TangramP -> String

write_valdefs (inputs, _, local_vars, _, nodes, _) =

cat_with "\n & " (map (val_def local_vars) nodes)

write_lhs :: TangramP -> String

write_lhs (_, _, _, assign, _, _) =

let left_vals = map fst assign

in "<<" ++ (cat_with "," (map var_name left_vals)) ++ ">>"

write_rhs :: TangramP -> String

write_rhs (_, _, local_vars, assign, _, _) =

let right_vals = map snd assign

f x = if x ‘elem‘ local_vars

then var_name x

else wire_name x

in "<<" ++ (cat_with "," (map f right_vals)) ++ ">>"

This concludes the exposition of the program code of the Ruby to Tangram
compiler.

9.2 Regular language recognizers

9.2.0 The τ design

Before we can compile the recognizers in Tangram, we need a small library
of standard Ruby components:

rid = WIRING (LEAF 0, LEAF 0)

rid2 = WIRING (pair 0 1, pair 0 1)

swap = WIRING (pair 0 1, pair 1 0)

fork = WIRING (pair 0 0, LEAF 0)

fork2 = WIRING (PAIR (pair 0 1) (pair 0 1), pair 0 1)

rsh = WIRING (PAIR (LEAF 0) (pair 1 2), PAIR (pair 0 1) (LEAF 2))

lsh = INV rsh

rsh2 = WIRING (PAIR (pair 0 1) (pair 2 3)

, PAIR (PAIR (pair 0 1) (LEAF 2)) (LEAF 3))

lsh2 = INV rsh2

outl = WIRING (LEAF 0, pair 0 1)

outr = WIRING (LEAF 1, pair 0 1)

split r s = r ‘x‘ s ‘o‘ fork

9.2. Regular language recognizers 141

split2 r s = r ‘x‘ s ‘o‘ fork2

feedback r = (INV fork) ‘o‘ (r ‘x‘ rid) ‘o‘ rrr

where rrr = WIRING (PAIR (pair 1 2) (LEAF 2), LEAF 1)

feedback2 r = (INV fork) ‘o‘ (r ‘x‘ rid) ‘o‘ rrr2

where rrr2 = WIRING (PAIR (PAIR (pair 0 1) (LEAF 2)) (LEAF 2), pair 0 1)

Because of the simple unification algorithm that we employ, we cannot con-
nect a single wire to a pair of wires. In other words, our rid primitive
corresponds to ῑ rather than ι. This means that we must define different
versions of various wiring primitives: for instance, rid2 corresponds to ῑ×ῑ.

The type of regular expression is defined this way:

data E = Char Char | Choice E E | Seq E E | Star E

We define a function to encode uppercase characters into integers:

char_encode :: Char -> Int

char_encode c = if isUpper c

then ord c - (ord ’A’)

else error

"char_encode is only defined on uppercase characters"

The following defines eqlc t to be the correspondent of (=̇ t):

eqlc :: Char -> Ruby

eqlc c = eqlg ‘o‘ rid ‘x‘ (k (char_encode c)) ‘o‘ (INV outl) ‘o‘ (width 5)

Note that this definition includes a type constraint (width). Now the defini-
tion of τ is straightforward:

reorg = WIRING (PAIR (LEAF 1) (pair 0 2), PAIR (pair 0 1) (LEAF 2))

tau :: E -> Ruby

tau (Char t) = delay

‘o‘ andg

‘o‘ (eqlc t) ‘x‘ rid

tau (Choice e f) = org ‘o‘ ((tau e) ‘split2‘ (tau f))

tau (Seq e f) = tau f ‘o‘ (outl ‘split2‘ (tau e))

tau (Star e) = feedback2 (org ‘o‘ rid ‘x‘ (tau e) ‘o‘ reorg)

142 Chapter 9. A Tangram implementation

? r2t (tau (Seq (Char ’T’) (Char ’T’)))

(c1!bool & c5?[0..31] & c19?bool).

begin

v1: var bool

& v3: var bool

& v5: var [0..31]

& v19: var bool

|

forever do

c1!v1 || c5?v5 || c19?v19

; <<v1,v3>>

:= begin

w0 = val w2 * v3

& w2 = val v5 = w6

& w6 = val 19

& w20 = val w22 * v19

& w22 = val v5 = w26

& w26 = val 19

| <<w0,w20>>

end

od

end

Figure .: The recognizer for τ.(t ; t).

We can now test an example: we compile the recognizer for τ.(t ; t); see
figure 9.2.0 We compile the Tangram program with the Tangram compiler
tg2hc, and then simulate it with hcsim. The output is as follows:

% hcsim tau0 out in_a in_e

HC2HC V1.0.3

Copyright 1997 Philips Electronics N.V.

All rights reserved

HCSIM V1.0.3

Copyright 1997 Philips Electronics N.V.

9.2. Regular language recognizers 143

All rights reserved

Reading handshake circuit.

Starting simulation.

End of input file in_e

End of input file in_a

Simulation finished.

Simulation took 0.00 seconds CPU time.

Simulated 983 communication events.

Simulation speed: Inf events per second.

Total time: 198 ns

Total energy: 2.211 nJ

Average power: 11.131 mW

The command that starts the simulation is the one after the % prompt. The
arguments are the name of the Tangram program, followed by a filename for
each of the program’s channels. The contents of the files out, in_a and in_e
for this simulation are collated together in the following table:

% paste out in_a in_e

0 19 0

0 19 1

0 19 0

1 19 0

0 19 1

0 20 0

0 19 0

0

(Here paste is the Unix command that adjoins a number of files line by
line.) The output corresponds to what we expect. Compared with the table
on page 112 obtained from Hutton’s Ruby interpreter there is an extra line
(the last one). The Tangram simulator performs an extra output action,
since the Tangram program is ready to perform it. Then it stops, since the
input actions cannot be performed, having exhausted the input.

9.2.1 The ρ design

A few auxiliary definitions that we need are:

144 Chapter 9. A Tangram implementation

plumb = WIRING (PAIR (pair 1 2) (pair 1 3)

, PAIR (pair 1 2) (LEAF 3))

str :: Ruby -> Ruby

str r = let ll = WIRING (LEAF 0

, PAIR (pair 1 2) (PAIR (pair 1 2) (LEAF 0)))

rr = WIRING (PAIR (pair 1 2) (LEAF 3)

, (pair 1 2))

in ll ‘o‘ (rid2 ‘x‘ r) ‘o‘ rr

term2 = fork2 ‘o‘ (PRIM TOP)

The only place where we need the TOP primitive is in the definition of term2,
above. The definitions of ρ and υ are then:

rho :: E -> Ruby

rho (Seq e (Seq f g)) = rho (Seq (Seq e f) g)

rho (Seq e f) = (ups f) ‘o‘ plumb ‘o‘ (rho e)

rho e = (ups e) ‘o‘ term2

ups (Choice e f) = rid2 ‘x‘ (org

‘o‘ (split2 (str (rho e))

(str (rho f))))

ups (Star e) =

rid2 ‘x‘ (feedback2 (org

‘o‘ (rid ‘x‘ (str (rho e)))

‘o‘ reorg))

ups (Char t) =

(INV (delay ‘x‘ delay))

‘x‘ (delay ‘o‘ andg ‘o‘ ((eqlc t) ‘x‘ rid))

This definition is very close to the one we used for the Hutton interpreter, ex-
cept for minor syntactic differences. Again we may try an example: we define
test0 to be the Gofer representation of the regular expression (t; u; v)+(z; z)

test0 = Choice (Seq (Seq (Char ’T’) (Char ’U’)) (Char ’V’))

(Seq (Char ’Z’) (Char ’Z’))

the compiled Tangram program is in figure . on the next page. Note that
we cannot compile rho test0 directly, since this would lead to a Tangram
program whose output is not driven by a delay (the main regular expres-
sion operator is choice, hence the output is driven by an “or” gate. So we
have to compile (rid2 ‘x‘ delay ‘o‘ (rho test0) instead. The result of
simulating this circuit with the inputs used on page 118 is as follows:

9.2. Regular language recognizers 145

(c5!bool & c0?[0..31] & c1?bool).

begin

v0: var [0..31]

& v1: var bool

& v5: var bool

& v10: var bool

& v11: var bool

& v24: var [0..31]

& v26: var bool

& v30: var bool

& v52: var [0..31]

& v54: var bool

& v58: var bool

& v80: var [0..31]

& v82: var bool

& v122: var [0..31]

& v124: var bool

& v128: var bool

& v150: var [0..31]

& v152: var bool

|

forever do

c5!v5 || c0?v0 || c1?v1

; <<v5,v10,v11,v24,v26,v30,v52,v54,v58,v80,v82,v122,v124,v128,v150,v152>>

:= begin

w4 = val v10 + v11

& w27 = val w29 * v30

& w29 = val v24 = w33

& w33 = val 21

& w55 = val w57 * v58

& w57 = val v52 = w61

& w61 = val 20

& w83 = val w85 * v82

& w85 = val v80 = w89

& w89 = val 19

& w125 = val w127 * v128

& w127 = val v122 = w131

& w131 = val 25

& w153 = val w155 * v152

& w155 = val v150 = w159

& w159 = val 25

| <<w4,w27,w125,v0,v1,w55,v24,v26,w83,v52,v54,v0,v1,w153,v122,v124>>

end

od

end

Figure .: The Tangram program for rid2 ‘x‘ delay ‘o‘ (rho test0)

146 Chapter 9. A Tangram implementation

% paste out in_a in_e

0 25 1

0 19 1

0 25 0

0 20 0

0 0 0

1 21 0

0 0 0

0 0 0

1

The results correspond to the ones on page 118, except that the outputs
appear one clock tick later due to the extra delay we placed on the output
wire.

9.2.2 The η design

We start again with a few auxiliary definitions:

delays 0 = rid

delays n = delay ‘o‘ (delays (n-1))

busdelays n = (delays n) ‘x‘ (delays n)

The following definitions are entirely similar to the one in section 8.4 on
page 118. The “shape” of a κ cell:

ccn n r = (rid2 ‘x‘ org)

‘o‘ rsh2

‘o‘ ((split2 (busdelays n) r) ‘x‘ rid)

cc r = ccn 0 r

The left-inverse of cc:

ccli r = let outr2 = WIRING (LEAF 2 , PAIR (pair 0 1) (LEAF 2))

outl2 = WIRING ((pair 0 1) , PAIR (pair 0 1) (LEAF 2))

in outr2

‘o‘ r

‘o‘ rid2 ‘x‘ false

‘o‘ (INV outl2)

9.2. Regular language recognizers 147

The κ cell:

kappa (Char t) = cc (tau (Char t))

kappa (Choice e f) = (kappa e) ‘o‘ (kappa f)

kappa (Seq e f) =

cc ((ccli (kappa f))

‘o‘ (split2 outl

(ccli (kappa f))))

kappa (Star e) =

cc (feedback2 (org

‘o‘ (rid ‘x‘ (ccli (kappa e)))

‘o‘ reorg))

Finally, the definitions of ℓ and η:

ell (Char t) = 0

ell (Choice e f) = ell e + (ell f) + 1

ell (Seq e f) = ell e + (ell f)

ell (Star e) = 0

eta (Char t) = kappa (Char t)

eta (Choice e f) = eta e

‘o‘ ((delay ‘x‘ delay) ‘x‘ delay)

‘o‘ (eta f)

eta (Seq e f) =

let n = ell e

m = ell f

in ccn (n+m) ((ccli (kappa f))

‘o‘ (split2 ((delays n) ‘o‘ outl)

(ccli (kappa e))))

eta (Star e) = kappa (Star e)

Let’s now define the regular expression t+ u ; u+ v ; v ; v :

test1 = Choice (Char ’T’)

(Choice (Seq (Char ’U’) (Char ’U’))

(Seq (Seq (Char ’V’) (Char ’V’)) (Char ’V’)))

The output of compiling delay ‘o‘ (ccli (eta test1)) can be seen in
figure . on the next page.

148 Chapter 9. A Tangram implementation

(c1!bool & c210?[0..31] & c212?bool).

begin

v1: var bool

& v3: var [0..31]

& v4: var bool

& v10: var bool

& v11: var bool

& v50: var [0..31]

& v52: var bool

& v61: var bool

& v83: var bool

& v146: var bool

& v210: var [0..31]

& v212: var bool

& v243: var bool

& v329: var bool

& v390: var bool

|

forever do

c1!v1 || c210?v210 || c212?v212

; <<v1,v3,v4,v10,v11,v50,v52,v61,v83,v146,v243,v329,v390>>

:= begin

w0 = val v10 + v11

& w25 = val w27 * v4

& w27 = val v3 = w31

& w31 = val 19

& w54 = val w60 + v61

& w60 = val v83 + w84

& w77 = val v146 + w147

& w84 = val false

& w98 = val w100 * w77

& w100 = val v50 = w104

& w104 = val 20

& w147 = val false

& w161 = val w163 * v52

& w163 = val v50 = w167

& w167 = val 20

& w214 = val w220 + w221

& w220 = val v243 + w244

& w221 = val false

& w237 = val w306 + w307

& w244 = val false

& w258 = val w260 * w237

& w260 = val v210 = w264

& w264 = val 21

& w306 = val v329 + w330

& w307 = val false

& w323 = val v390 + w391

& w330 = val false

& w344 = val w346 * w323

& w346 = val v210 = w350

& w350 = val 21

& w391 = val false

& w405 = val w407 * v212

& w407 = val v210 = w411

& w411 = val 21

| <<w0,v50,v52,w25,w54,v210,v212,w214,w98,w161,w258,w344,w405>>

end

od

end

Figure .: The Tangram program for delay ‘o‘ (ccli (eta test1))

Chapter 10

A machine-checked derivation

In this section we use a proof checker called PVS (Rushby et al. [40]) to verify
part of the carré derivation. This entails the definition and verification of
part of the theory of chapters 2 and 3, as well as the introductory material
of section 4. The work consists in rewriting the relevant definitions and
theorems in the language of PVS, and in leading the theorem prover to
verify all theorems. The resulting body of equality lemmas can be used as a
calculus that allows us to reproduce the proof of (.).

The work described in this chapter is not a report on a complete and practi-
cally usable embedding of Ruby in PVS, but rather a demonstration that such
an embedding is feasible and useful. Rasmussen [44] describes a much more
in-depth work, using the Isabelle theorem prover (Paulson [42]). The present
exposition may be useful for didactic purposes, since it is small enough to be
quickly understood.

PVS is a system designed to assist in the job of formally verifying theorems.
Its main parts are a specification language, a type-checker and a theorem
prover. The specification language is based on a higher order logic, similar
to the one used by HOL (Gordon [10]). The main difference with respect to
HOL is that it is possible to define arbitrary subtypes, by restricting a type
with a predicate. For instance, the set of non-zero integers is defined in PVS
by

NZI: TYPE = { x:int | x /= 0 }

It is then possible to declare integer division as a total function:

div: [int,NZI -> int]

149

150 Chapter 10. A machine-checked derivation

This flexibility makes type-checking undecidable, since to type-check a for-
mula may involve arbitrary theorem proving. In this respect the high automa-
tion of the theorem prover is helpful, since many type-checking conditions
can be discharged by the theorem prover without human assistance.

The theorem prover makes use of decision procedures to allow many simple
facts about arithmetic to be automatically discharged. PVS comes with a
number of theories and theorems pre-proved, the so-called “prelude”. It is
possible to define tree-like datatypes of the kind provided in Gofer or ML;
for each such datatype a number of axioms is generated, such as rules for
structural induction.

The general philosophy of PVS is to allow the maximum ease of use at the
expense of flexibility (theorem proving systems are well-known to be awkward
to use). By contrast, systems like HOL are somewhat harder to use, but allow
greater scope for customization. Both HOL and PVS have their own logic
language; but HOL has a programmable meta-language called ML (this is in
fact a variant of the general-purpose ML programming language described
e.g., in [43]). Terms in the logic language are just elements of the ML type
“term”; interaction with the theorem prover happens through interaction
with the ML interpreter prompt. This is analogous to the use of Lazy ML to
interact with the Ruby interpreter [23] or the use of Gofer to interact with
the Ruby-to-Tangram compiler of chapter 9.

Having a programming language as a meta-language makes it much more
natural to automate various things such as proof procedures, or the parsing
and pretty-printing of embedded languages. The downside is that it makes
the syntax more cluttered; for instance, the definition of an “and” gate may
look like the following:

let AND_DEF = new_definition

(‘AND_DEF‘, "AND_DEF(a:num->bool,b:num->bool,out:num->bool)

= !t. out t = ((a t) AND (b t))");;

As is evident by this example, one is forced to mix the logic language and
the meta-language at all times.

PVS instead lacks a meta-language. This makes it much more difficult to
embed custom languages in the PVS language; for instance, it is difficult
to write a term representing an imperative program using a syntax that
resembles the traditional Algol syntax. On the other hand, one does not have
to learn and use two languages at the same time. All interaction with PVS
is done through the Emacs editor window; commands to the theorem prover
are given by means of commands defined in Emacs. This makes interaction

10.0. The theories 151

simpler. Proof procedures can still be coded when needed (they are called
“strategies” in PVS jargon.) We’ll see an example of a custom PVS strategy
later.

The main reason for doing this work is to get a chance to look at the theory
with fresh eyes. Working within the limitations of a fixed specification lan-
guage forces one to think about the definitions under a different light. For
instance, compare the definition of delay from chapter 2 with the one given
below. A second advantage is that small details that may be overlooked in
paper-and-pencil work come to the forefront. For instance, before starting
this work we didn’t realize that the “lifting” operation described in chapter 3
is actually a collection of operations, one for each arity of the operation to
be lifted.

10.0 The theories

Our verification effort is structured in a number of “theories”, a theory being
simply a collection of definitions and theorems (the PVS equivalent of pro-
gramming languages “modules”). Theories can be parameterized, so that one
can, for instance, build a theory of relations over arbitrary types. Theories
can “import” other theories; this means that all the definitions and theorems
of the imported theory are made available to the theory that imports them.
Theories are a means of keeping one’s work organized; it would be possible
to work with a single, large theory. Our work is divided into six theories;
six other theories were automatically generated (those whose name begins
with tree_adt or plus_adt), and one, sets, is from the PVS prelude. The
diagram in figure . on page 180 shows the inclusion relation between the
theories. The main theorem we aim to prove is enunciated in theory carre.

All the theorems and lemmas enunciated in the theories that follow were
proved with PVS.

In the rest of this section we examine the contents of each theory.

10.0.0 The theory of relations

The first step is to define a theory of relations; this is done in theory rel,
which in turn is based on the PVS prelude theory sets. Sets are represented
in PVS by predicates. Binary relations are just a special case of predicates. In
this we follow closely the exposition of relational calculus given in chapter 2.

152 Chapter 10. A machine-checked derivation

The main notational difference is that we are forced to write R(x,y), where
we previously wrote x〈R〉y. The theory is parameterized by a type t, and
our relations are relations between arbitrary pairings of elements of t. The
notion of “arbitrary pairing” is captured by binary trees. The definition of
the tree datatype is as follows:

tree[t:TYPE+] : DATATYPE

BEGIN

scalar (scalar: t): scalar?

pair (left: tree, right: tree): pair?

END tree

For any type X, this defines tree[X] to be a type, with the unary construc-
tor scalar and the binary constructor pair, with corresponding predicates
scalar? and pair? and accessor functions scalar, left and right. The-
ory tree_props defines simple lemmas about trees that we needn’t describe
in detail.

The theory starts with the declaration of the parameters, and of the imported
theories. We declare U (for “Universe”) an abbreviation for the set of trees
of elements of t. Theory set is imported with argument [U,U], which is the
cartesian product of U with itself. This means that whenever we refer to an
element of the type set, we mean “a subset of [U,U]”. Type rel is declared
as a synonym for set.

rel [t : TYPE+] : THEORY

BEGIN

IMPORTING tree[t]

U: TYPE = tree

IMPORTING sets[[U,U]]

rel: TYPE = set

Next we declare some variables; these declarations mean, for instance: “R is
a variable ranging over rel”, and allow us to use the name R freely without
need to declare its type in every formula it occurs.

R,S,T,U: VAR rel

x,y,z,v: VAR U

f: VAR [U -> U]

Next we declare o as the operator symbol for relational composition, so that
we can write R o S for R ◦ S.

; o(R,S)(x,y): bool = EXISTS z: R(x,z) AND S(z,y)

10.0. The theories 153

The definition of inverse, identity, ⊤⊤ and ⊥⊥ are natural:

inv(R)(x,y): bool = R(y,x)

I(x,y) : bool = (x = y)

top(x,y) : bool = TRUE

bot(x,y) : bool = FALSE

We define a predicate that states that a relation is deterministic:

determ?(R) : bool = FORALL x,y,z: R(y,x) AND R(z,x) IMPLIES y = z

Now a number of basic facts is enunciated about the definitions so far:

id0: THEOREM R o I = R

id1: THEOREM I o R = R

comp0: THEOREM R o union(S,T) = union(R o S , R o T)

comp1: THEOREM union(R,S) o T = union(R o T , S o T)

comp_assoc: THEOREM (R o S) o T = R o (S o T)

comp_determ: THEOREM (determ?(R) AND determ?(S)) IMPLIES determ?(R o S)

det_rel_absorb_r: LEMMA (FORALL x,y: R(x,y) = (x=f(y)))

IMPLIES (S o R)(z,v) = S(z,f(v))

det_rel_absorb_l: LEMMA (FORALL x,y: R(x,y) = (y=f(x)))

IMPLIES (R o S)(z,v) = S(f(z),v)

inv_inv: THEOREM inv(inv(R)) = R

inv_comp: THEOREM inv(R o S) = inv(S) o inv(R)

inv_id: THEOREM inv(I) = I

inv_eq: THEOREM (inv(R) = inv(S)) = (R = S)

inv_inter: THEOREM inv(intersection(R,S)) = intersection(inv(R), inv(S))

inv_union: THEOREM inv(union(R,S)) = union(inv(R), inv(S))

Now we define product and split. For product we choose the symbol * since
it is the closest to × among the ones that can be used in infix notation. For
split, we use functional notation.

; *(R,S)(x,y): bool =

IF pair?(x) AND pair?(y)

THEN R(left(x),left(y)) AND S(right(x),right(y))

154 Chapter 10. A machine-checked derivation

ELSE FALSE ENDIF

split(R,S)(x,y): bool =

IF pair?(x) THEN R(left(x), y) AND S(right(x), y)

ELSE FALSE ENDIF

Again, we have the enunciation of a number of basic facts:

inv_prod: THEOREM inv(R*S) = inv(R)*inv(S)

fusion: THEOREM (R o S) * (T o U) = (R * T) o (S * U)

split_fusion0: THEOREM (R * S) o split(T, U) = split(R o T, S o U)

split_fusion1: THEOREM

determ?(T) IMPLIES split(R, S) o T = split(R o T, S o T)

split_ldomain: THEOREM split(R,S) = (I*I) o split(R,S)

split_determ: THEOREM

determ?(R) AND determ?(S) IMPLIES determ?(split(R,S))

END rel

This concludes the theory of relations.

10.0.1 The theory of circuits

Theory circuits is mainly concerned with delay and its properties. It also
defines the lifting operation for unary and binary functions. It defines type
stream to be the type of functions from the integers to the theory parameter
t. By importing theory rel with parameter stream we obtain that our
circuits are relations over trees of streams. (The t parameter in theory rel
is bound to type stream.)

circuits [t: TYPE+] : THEORY

BEGIN

stream: TYPE = [int -> t]

IMPORTING rel[stream]

IMPORTING tree_props[stream]

R,S,T,U: VAR rel

x,y,z,w: VAR tree[stream]

l,m,n: VAR int

10.0. The theories 155

The following predicates characterize particular classes of trees. Theorem
pair of pairs eta facilitates manipulation of pair-of-pairs.

pair_of_scalars?(x): bool =

pair?(x) AND scalar?(left(x)) AND scalar?(right(x))

pair_of_pairs?(x): bool =

pair?(x) AND pair?(left(x)) AND pair?(right(x))

pair_of_pairs_eta: THEOREM

(FORALL (x: (pair_of_pairs?)):

pair(

pair(left(left(x)), right(left(x)))

, pair(left(right(x)), right(right(x))))

= x)

While we talked in previous chapters of lifting as a single operation, to be
more precise we should define a different lifting operation for each arity of
the lifted relation. For our needs it suffices to define lifting for binary deter-
ministic relations; lifting of unary functions is also given for demonstration.

lift1(f: [t -> t])(x,y): bool =

IF scalar?(x) AND scalar?(y)

THEN FORALL n: scalar(x)(n) = f(scalar(y)(n))

ELSE FALSE ENDIF

lift2(f: [t,t -> t])(x,y): bool =

IF pair_of_scalars?(y) AND scalar?(x)

THEN FORALL n: scalar(x)(n) = f(scalar(left(y))(n), scalar(right(y))(n))

ELSE FALSE ENDIF

Delay and antidelay are deterministic relations; it helps to define them in such
a way that the functional dependence between the left and right arguments
is easily shown. So, we first define a function that when applied to a tree
of streams it applies primitive delay to all the leaves of the tree; then we
use these functions in the definition of delay as a relation. As we said, the
definition of delay given here is syntactically much different from the one
given in chapter 3, making use of tree map rather than fixed points. The
tree map can be defined recursively, in a way that is probably more readily
understandable by people with a knowledge of computer programming than
a definition using fixed points. On the other hand, the meaning of recursive
definitions is usually given by means of fixed point, so the difference between
the two ways of defining delay is not great. Basic theorems about delays
follow.

156 Chapter 10. A machine-checked derivation

delayed: [U -> U] = map (LAMBDA (f:stream): LAMBDA n: f(n-1))

antidelayed: [U -> U] = map (LAMBDA (f:stream): LAMBDA n: f(n+1))

delay(x,y): bool = (x = delayed(y))

yaled(x,y): bool = (y = delayed(x))

del_antidel_inverse: THEOREM delayed(antidelayed(x)) = x

antidel_del_inverse: THEOREM antidelayed(delayed(x)) = x

delay_invertible: THEOREM delay(x,y) = (y = antidelayed(x))

yaled_invertible: THEOREM yaled(x,y) = (x = antidelayed(y))

inv_delay: THEOREM inv(delay) = yaled

inv_yaled: THEOREM inv(yaled) = delay

delay_poly0: THEOREM delay o (I*I) = delay*delay

delay_poly1: THEOREM (I*I) o delay = delay*delay

delay_yaled: THEOREM delay o yaled = I

yaled_delay: THEOREM yaled o delay = I

delay_determ: THEOREM determ?(delay)

Finally, we have some theorems about lifted functions:

lift2_rdom: THEOREM FORALL (f: [t,t -> t]): lift2(f) o (I*I) = lift2(f)

lift2_determ: THEOREM FORALL (f: [t,t -> t]): determ?(lift2(f))

lift2_delayed: LEMMA FORALL (f: [t,t -> t]):

lift2(f)(x,pair(delayed(y),delayed(z))) = lift2(f)(antidelayed(x),pair(y,z))

retiming_lift2: THEOREM FORALL (f: [t,t -> t]):

lift2(f) o delay = delay o lift2(f)

END circuits

So much for the theory of circuits.

10.0.2 The theory of tuples

Theory tuples reproduces part of the material from section 4. It defines a
way to interpret trees as tuples. Type upfrom(1) used below is the type of
positive integers.

10.0. The theories 157

tuples [t: TYPE+] : THEORY

BEGIN

IMPORTING circuits[t]

n,m: VAR upfrom(1)

R,S,T,U: VAR rel

a,b,c,d: VAR U

The max width of a tree is the maximum tuple width of a tree; i.e., the
number of times we can take the “right” path from the root of the tree.

max_width(a): RECURSIVE upfrom(1) =

IF scalar?(a) THEN 1

ELSE 1+max_width(right(a)) ENDIF

MEASURE a BY <<

The following predicates characterise certain classes of trees; a tree that
satisfies n tuple?(n) can be interpreted as a tuple of (at least) n elements.

n_tuple?(n)(a): bool = n <= max_width(a)

n_tuple_of_scalars?(n)(a): RECURSIVE bool =

IF n = 1

THEN scalar?(a)

ELSE pair?(a)

AND scalar?(left(a))

AND n_tuple_of_scalars?(n-1)(right(a)) ENDIF

MEASURE n

Next are the definitions of various combinators, all of which closely follow
the ones in section 4.

map(n,R): RECURSIVE rel =

IF n = 1 THEN R ELSE R * map(n-1, R) ENDIF

MEASURE n

arity(n): rel = map(n, I)

fold(n, R): RECURSIVE rel =

IF n = 1 THEN I ELSE R o (I * fold(n-1, R)) ENDIF

MEASURE n

fork(n): RECURSIVE rel =

158 Chapter 10. A machine-checked derivation

IF n = 1 THEN I ELSE split(I, fork(n-1)) ENDIF

MEASURE n

tri(n,R): RECURSIVE rel =

IF n = 1 THEN I ELSE I * (tri(n-1, R) o map(n-1, R)) ENDIF

MEASURE n

The label CHALLENGE is formally equivalent to THEOREM; it can be used to
label things that can be used to “challenge” a definition; when a definition
is complicated it may take some care to become convinced that what was
defined is indeed what one had in mind. One way to “test” a definition is
to see if some simple expected consequences are indeed provable. Here are a
few such challenges.

map: CHALLENGE map(2,R) = R*R

fold: CHALLENGE R o (I*I) = R IMPLIES fold(2, R) = R

fork: CHALLENGE fork(2) = split(I,I)

tri: CHALLENGE tri(2,R) = I * R

Then we have a list of theorems; all of these were proved by induction on n.

map_step: THEOREM map(n+1, R) = R*map(n,R)

tri_step: THEOREM tri(n+1, R) = I*(tri(n,R) o map(n,R))

map_fusion: THEOREM map(n, R) o map(n, S) = map(n, R o S)

fold_map: THEOREM R o (S*S) = S o R

IMPLIES fold(n, R) o map(n, S) = S o fold(n, R)

fork_fusion1: THEOREM determ?(R)

IMPLIES fork(n) o R = map(n,R) o fork(n)

fork_ldom: THEOREM map(n, I) o fork(n) = fork(n)

map_map: THEOREM T o S = S o R

IMPLIES map(n,T) o map(n,S) = map(n,S) o map(n,R)

tri_map: THEOREM T o S = S o R

IMPLIES tri(n,T) o map(n,S) = map(n,S) o tri(n,R)

horner: THEOREM R o (S*S) = S o R

IMPLIES fold(n, R) o tri(n, S) = fold(n, R o (I*S))

END tuples

This concludes the theory of tuples.

10.0. The theories 159

10.0.3 The theory of zipn

The definitions and proofs for zipn are complicated enough to deserve a
theory of their own. The theory begins with the usual declarations, and then
defines predicates that are later used as subtypes of trees.

zip [t: TYPE+] : THEORY

BEGIN

IMPORTING tuples[t]

n,m: VAR upfrom(1)

R,S,T,U: VAR rel

a,b,c,d: VAR U

pair_of_n_tuples?(n)(a): bool =

pair?(a) AND n_tuple?(n)(left(a)) AND n_tuple?(n)(right(a))

tuple_of_pairs?(n)(a): RECURSIVE bool =

IF n = 1 THEN pair?(a)

ELSE pair?(a) AND pair?(left(a)) AND tuple_of_pairs?(n-1)(right(a))

ENDIF

MEASURE n

tuple_of_pairs_pair: LEMMA tuple_of_pairs?(n)(a) => pair?(a)

tuple_of_pairs0: LEMMA (n /= 1 AND tuple_of_pairs?(n)(a))

=> pair?(left(a))

tuple_of_pairs1: LEMMA (n /= 1 AND tuple_of_pairs?(n)(a))

=> tuple_of_pairs?(n-1)(right(a))

tuple_of_pairs2: LEMMA FORALL (n: upfrom(2)):

tuple_of_pairs?(n)(a)

=> tuple_of_pairs?(n-1)(a)

We observed earlier that delay, being a deterministic relation, is better de-
fined by means of a function; for this makes it easier to manipulate it in
proofs. The same applies to zip, so here we define fzip (for “functional
zip”) in much the same way as it is defined in functional programs. Note
that the predicate pair of n tuples?(n) defined earlier is used to type the
second argument.

fzip(n: upfrom(1), a: (pair_of_n_tuples?(n)))

: RECURSIVE (tuple_of_pairs?(n)) =

IF n = 1 THEN a

ELSE LET b = left(a), c = right(a)

160 Chapter 10. A machine-checked derivation

IN pair(

pair(left(b), left(c))

, fzip(n-1, pair(right(b), right(c)))

)

ENDIF

MEASURE n

Now funzip is the inverse of fzip

funzip(n: upfrom(1), a: (tuple_of_pairs?(n)))

: RECURSIVE (pair_of_n_tuples?(n)) =

IF n = 1 THEN a

ELSE LET b = funzip(n-1, right(a))

IN pair(pair(left(left(a)), left(b)), pair(right(left(a)), right(b)))

ENDIF

MEASURE n

Now we can give the definition of zip seen as a relation. Then challenges
to the definition and properties of zip are are declared. As usual, properties
that depend on n are proved by induction on n. Theorem zip fold is not
necessary for the proof of the carré theorem. It is included because it is
interesting in its own right.

zip(n)(a,b): bool = IF pair_of_n_tuples?(n)(b)

THEN a = fzip(n, b)

ELSE FALSE ENDIF

fzip2_fzip2: THEOREM pair_of_pairs?(a) IMPLIES fzip(2, fzip(2, a)) = a

fzip_funzip_inverse: THEOREM tuple_of_pairs?(n)(a)

IMPLIES fzip(n, funzip(n, a)) = a

funzip_fzip_inverse: THEOREM pair_of_n_tuples?(n)(a)

IMPLIES funzip(n, fzip(n, a)) = a

zip_invertible: THEOREM pair_of_n_tuples?(n)(b)

AND tuple_of_pairs?(n)(a)

IMPLIES zip(n)(a,b) = (b = funzip(n, a))

fzip2: CHALLENGE fzip(2, pair(pair(a,b),pair(c,d)))

= pair(pair(a,c),pair(b,d))

zip1: CHALLENGE zip(1) = I*I

10.0. The theories 161

zip2: CHALLENGE zip(2)(pair(pair(a,b),pair(c,d)) ,

pair(pair(a,c),pair(b,d)))

zip2_inv: THEOREM inv(zip(2)) = zip(2)

zip_step: THEOREM zip(n+1) = (I*zip(n)) o zip(2)

zip2_rdom0: THEOREM zip(2) o (I*I) = zip(2)

zip2_rdom1: THEOREM zip(2) o ((I*I)*(I*I)) = zip(2)

zip2_ldom1: THEOREM ((I*I)*(I*I)) o zip(2) = zip(2)

zip2_lemma0: LEMMA (zip(2) o R)(pair(pair(a,b),pair(c,d)), e)

= R(pair(pair(a,c),pair(b,d)), e)

zip2_lemma1: LEMMA (R o zip(2))(e, pair(pair(a,b),pair(c,d)))

= R(e, pair(pair(a,c),pair(b,d)))

zip2_comm: THEOREM zip(2) o ((R * S)*(T * U)) = ((R * T)*(S * U)) o zip(2)

zip2_split: THEOREM zip(2) o split(split(R, S), split(T, U))

= split(split(R, T), split(S, U))

zip_ldom: THEOREM map(n, I*I) o zip(n) = zip(n)

zip_fold: THEOREM FORALL (n:upfrom(2)): zip(n) = inv(fold(n, zip(2)))

zip_map: THEOREM zip(n) o (map(n,R) * map(n,S)) = map(n,R*S) o zip(n)

zip_tri: THEOREM zip(n) o (tri(n,R) * tri(n,S)) = tri(n,R*S) o zip(n)

zip_split1: THEOREM zip(n) o split(fork(n),fork(n))

= map(n, split(I,I)) o fork(n)

END zip

So much for the theory of zip.

10.0.4 The theory of carré

Finally, we have theory carre, where the main theorem is enunciated. This
is the only non-parameterized theory that we use, since we are able to fix
the universe of values that we need to the disjoint union of the booleans
and the naturals. The plus datatype defines the disjoint sum of two sets in
the manner that is usual in functional programming languages like Gofer or
SML:

plus [T,S: TYPE]: DATATYPE

162 Chapter 10. A machine-checked derivation

BEGIN

inl (fst: T): inl?

inr (snd: S): inr?

END plus

(A more traditional way to define the disjoint union of sets A and B is
A + B = {(0, a) | a ∈ A} ∪ {(1, b) | b ∈ B}.) So, when plus is instan-
tiated with the types bool and nat, as in plus[bool,nat] we have that,
for instance, inl(FALSE) is an element that satisfies inl?(inl(FALSE)) and
falsifies inr?(inl(FALSE)).

carre : THEORY

BEGIN

IMPORTING plus[bool,nat]

inlFALSE: plus = inl(FALSE)

IMPORTING zip[plus]

R,S,T,U: VAR rel

a,b,c,d: VAR U

x,y,z: VAR plus

n,m: VAR upfrom(1)

Next we have the definitions of ✁n, =̇ and ∧̇; andg stands for “and gate”.
The name “and” is a reserved keyword of PVS.

delays(n): RECURSIVE rel =

IF n = 1 THEN delay ELSE delay o (delays(n-1)) ENDIF

MEASURE n

eqlg: rel = lift2(LAMBDA x,y: inl (x = y))

andg: rel = lift2(LAMBDA x,y:

inl(inl?(x) AND inl?(y) AND fst(x) AND fst(y)))

Now a few lemmas are introduced; since they are meaningful on their own it
makes sense to declare and prove them separately rather than proving them
in the main proof. Another reason for declaring them separately is that some
of these are used more than once in the proof of the carré theorem.

eqlg_rdom: LEMMA eqlg o (I*I) = eqlg

andg_rdom: LEMMA andg o (I*I) = andg

retiming_eqlg: LEMMA eqlg o (delay*delay) = delay o eqlg

retiming_andg: LEMMA andg o (delay*delay) = delay o andg

delays_determ: LEMMA determ?(delays(n))

10.1. Proofs 163

Finally, we enunciate the main theorem.

carre: THEOREM fold(n, andg)

o map(n, eqlg)

o zip(n)

o (tri(n, delay)*tri(n,delay))

o split(fork(n), fork(n) o delays(n))

=

fold(n, andg o (I * delay))

o fork(n)

o eqlg

o split(I, delays(n))

END carre

This concludes the exposition of the PVS theories.

10.1 Proofs

When the PVS theorem prover is invoked on a formula, the formula is trans-
formed into a sequent, that is a pair (Γ,∆) where Γ is an (initially empty) list
of antecedent formulæ, and ∆ is a list of consequent formulæ, which initially
contains just the formula to be proved. Informally, a sequent is “true” if the
conjunction of the antecedents implies the disjunction of the consequents.
A proof consists in the application of rules of inference, that manipulate in
various way the sequent, or reduce it to a list of simpler sequents. A proof
attempt then has the shape of a tree, where the root is the original sequent,
and the leaves are sequents whose truth implies the truth of the original
sequent. A proof is complete when every leaf sequent is trivially true (or
can be shown to be by use of decision procedures.) The primitive rules of
inference can be combined in arbitrary proof procedures called “strategies”
or “tactics”. Many tactics are provided with PVS, and the users can write
their own.

By way of example, we now see the proof of R ◦ ι = R, theorem id0 in
theory rel. Figure . on page 181 shows the tree structure of the proof.

The proof begins with the following sequent:

id0 :

|-------

{1} (FORALL (R: rel): R o I = R)

164 Chapter 10. A machine-checked derivation

We use (skolem!) to eliminate the quantification, introducing the skolem
constant R!1 (think of it as R primed, or R’). (Usually, by skolemization is
meant a rule that allows one to replace an existentially quantified antecedent
variable with a fresh constant. The PVS rule can also perform the symmetric
operation of replacing an universally quantified consequent variable with a
constant.)

Rule? (skolem!)

Skolemizing,

this simplifies to:

id0 :

|-------

{1} R!1 o I = R!1

We are going to do a pointwise proof. The command (apply-extensionality)
applies the rule R = S ⇐ ∀(x, y : x〈R〉y ≡ x〈S〉y) and then skolemizes the
universal quantification. The hide? t flag means that we want to “hide”
from the resulting sequent the original formula. Next we expand the defini-
tions of composition and identity.

Rule? (apply-extensionality :hide? t)

Applying extensionality,

this simplifies to:

id0 :

|-------

{1} (R!1 o I)(x!1, x!2) = R!1(x!1, x!2)

Rule? (expand* "o" "I")

Expanding the definition(s) of (o I),

this simplifies to:

id0 :

|-------

{1} ((EXISTS (z: U): (R!1(x!1, z) AND (z = x!2))) = R!1(x!1, x!2))

PVS rules do not allow the manipulation of quantifiers, unless the quantified
term is the “top” term in the formula. The main function symbol in the
current sequent is boolean equality; the only way to get rid of it is to change
it into a propositional connective by (iff), and then do a proof by mutual
implication.

10.1. Proofs 165

Rule? (iff)

Converting top level boolean equality into IFF form,

Converting equality to IFF,

this simplifies to:

id0 :

|-------

{1} (EXISTS (z: U): (R!1(x!1, z) AND (z = x!2))) IFF R!1(x!1, x!2)

Rule? (ground)

Applying propositional simplification and decision procedures,

this yields 2 subgoals:

id0.1 :

{-1} EXISTS (z: U): (R!1(x!1, z) AND (z = x!2))

|-------

{1} R!1(x!1, x!2)

Now we must deal with two subproofs, which are both very easy. The first is
dealt with by skolemizing the antecedent existential, and then applying the
general-purpose tactic (ground):

Rule? (skolem!)

Skolemizing,

this simplifies to:

id0.1 :

{-1} (R!1(x!1, z!1) AND (z!1 = x!2))

|-------

[1] R!1(x!1, x!2)

Rule? (ground)

Applying propositional simplification and decision procedures,

This completes the proof of id0.1.

For the second subproof it is sufficient to instantiate the existential, and then
calling (assert), which tells the prover that the sequent “follows easily” from
the decision procedures.

id0.2 :

{-1} R!1(x!1, x!2)

166 Chapter 10. A machine-checked derivation

|-------

{1} EXISTS (z: U): (R!1(x!1, z) AND (z = x!2))

Rule? (inst 1 "x!2")

Instantiating the top quantifier in 1 with the terms:

x!2,

this simplifies to:

id0.2 :

[-1] R!1(x!1, x!2)

|-------

{1} (R!1(x!1, x!2) AND (x!2 = x!2))

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of id0.2.

Q.E.D.

This proof is very simple, and was conducted at a fine level of detail for
the purpose of demonstration; however, it is often convenient to leave such
simple proofs to the automated proof procedures. The proof of id1 below
makes use of the powerful (grind) tactic and is considerably shorter:

id1 :

|-------

{1} (FORALL (R: rel): I o R = R)

Rule? (skolem!)

Skolemizing,

this simplifies to:

id1 :

|-------

{1} I o R!1 = R!1

Rule? (apply-extensionality :hide? t)

Applying extensionality,

this simplifies to:

id1 :

10.1. Proofs 167

|-------

{1} (I o R!1)(x!1, x!2) = R!1(x!1, x!2)

Rule? (grind)

I rewrites I(x!1, z)

to (x!1 = z)

O rewrites (I o R!1)(x!1, x!2)

to EXISTS (z: U): (x!1 = z) AND R!1(z, x!2)

I rewrites I(x!1, z)

to (x!1 = z)

O rewrites (I o R!1)(x!1, x!2)

to EXISTS (z: U): (x!1 = z) AND R!1(z, x!2)

Trying repeated skolemization, instantiation, and if-lifting,

Q.E.D.

*
*

*

The style of proof that we’d like to use when verifying Ruby equalities would
ideally be similar to the one we employ with paper and pencil. This ideal
is not fully attainable with current theorem proving technology; but we try
to get as close as possible to it. In particular, in the supporting theories
rel, circuits, tuples and zip we prove a series of lemmas that will make
it possible to verify Ruby equalities in point-free style. The proofs of the
lemmas, however, are mostly pointwise, and equalities of relations are often
proved by mutual inclusion. The objective here is to relegate proofs by in-
duction, mutual inclusion and by pointwise reasoning to the proofs of lemmas
as much as possible, since these proof styles generally do not lead to concise
calculational proofs.

One of the problems we find in applying equational lemmas to a circuit term
is that the rewriting rules in PVS do not take into account the associativity
of composition. As a result, some steps which one finds obvious are compli-
cated by the need to rewrite several times the goal term with the associativity
lemma. To obviate this problem, we devised a simple rewriting rule “modulo
associativity” which we called assoc-rewrite. It works by first rewriting
the term with associativity, associating all compositions to the left; then it
alternately tries to rewrite with the given lemma and then with the associa-
tivity rule, until all compositions are associated to the right. The code for
assoc-rewrite is in figure . on page 182.

168 Chapter 10. A machine-checked derivation

10.2 The carre proof

The main theorem we aim to prove is theorem carre from the carre theory:

carre: THEOREM fold(n, andg)

o map(n, eqlg)

o zip(n)

o (tri(n, delay)*tri(n,delay))

o split(fork(n), fork(n) o delays(n))

=

fold(n, andg o (I * delay))

o fork(n)

o eqlg

o split(I, delays(n))

This corresponds to a proof of (.). The PVS proof we obtain has the shape
of a tree (see figure . on page 183). Whenever a rule with provisos is used,
the current sequent is decomposed into a list of sequents where the first is the
result of applying the rule, and the others are the provisos that must hold
for the rule to be valid. For instance, the rule (rewrite "fork_fusion1"),
which rewrites the current goal with the named lemma, has a proviso, which
is easily discharged by the appeal to lemma delays determ. As a result, one
can follow the main line of reasoning by traversing the tree from the root and
taking always the leftmost inferior node.

The carré proof starts with the following sequent:

carre :

|-------

{1} (FORALL (n: upfrom(1)):

fold(n, andg) o map(n, eqlg) o zip(n)

o (tri(n, delay) * tri(n, delay))

o split(fork(n), fork(n) o delays(n))

= fold(n, andg o (I * delay)) o fork(n) o eqlg

o split(I, delays(n)))

The first thing to do is to get rid of the quantification by skolemizing. We
supply the name n for the skolem constant, since it’s more readable than
automatically generated names like n!1.

Rule? (skolem 1 "n")

For the top quantifier in 1, we introduce Skolem constants: n,

10.2. The carre proof 169

this simplifies to:

carre :

|-------

{1} fold(n, andg) o map(n, eqlg) o zip(n) o (tri(n, delay) * tri(n, delay))

o split(fork(n), fork(n) o delays(n))

= fold(n, andg o (I * delay)) o fork(n) o eqlg o split(I, delays(n))

We now follow the structure of the derivation of page 60: we apply (.), by
rewriting modulo associativity of composition.

Rule? (assoc-rewrite "zip_tri")

rewriting with zip_tri modulo associativity,

this simplifies to:

carre :

|-------

{1} (fold(n, andg) o map(n, eqlg)) o tri(n, delay * delay) o zip(n)

o split(fork(n), fork(n) o delays(n))

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

We next want to commute trin.(✁×✁) with mapn.=̇; this is possible by
means of theorem tri map and because ✁×✁ commutes with =̇. Since
tri map is a conditional rewrite rule, we first introduce the proviso as an
antecedent. After rewriting, we hide the proviso since it’s no longer needed.

Rule? (lemma "retiming_eqlg")

Applying retiming_eqlg

this simplifies to:

carre :

{-1} eqlg o (delay * delay) = delay o eqlg

|-------

[1] (fold(n, andg) o map(n, eqlg)) o tri(n, delay * delay) o zip(n)

o split(fork(n), fork(n) o delays(n))

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

Rule? (assoc-rewrite "tri_map" :dir rl :subst ("T" "delay"))

rewriting with tri_map modulo associativity,

this simplifies to:

carre :

[-1] eqlg o (delay * delay) = delay o eqlg

170 Chapter 10. A machine-checked derivation

|-------

{1} (fold(n, andg) o tri(n, delay)) o map(n, eqlg) o zip(n)

o split(fork(n), fork(n) o delays(n))

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

Rule? (hide -1)

Hiding formulas: -1,

this simplifies to:

carre :

|-------

[1] (fold(n, andg) o tri(n, delay)) o map(n, eqlg) o zip(n)

o split(fork(n), fork(n) o delays(n))

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

Now we rewrite with (.); since we didn’t supply the proviso as an an-
tecedent, this time we’ll get two goals: the first one is the original goal after
rewriting, the second is the antecedent of the rewriting rule. We concentrate
first on our main line of reasoning, leaving the second goal for later. Note
that while our original sequent name is carre, the two sequents we obtain
after rewriting are called carre1 and carre2.

Rule? (rewrite "fork_fusion1")

Found matching substitution:

R gets delays(n),

n gets n,

Rewriting using fork_fusion1,

this yields 2 subgoals:

carre.1 :

|-------

{1} (fold(n, andg) o tri(n, delay)) o map(n, eqlg) o zip(n)

o split(fork(n), map(n, delays(n)) o fork(n))

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

Here we want to apply the split fusion rule split fusion0 (.); in order to
do so, we must have a mapn.ι term appear by applying fork ldom backwards
(the :dir rl flag means to apply the rule from right to left). This will rewrite
more than necessary, bringing about more mapn.ι terms than needed; we’ll
take care of that later by applying fork ldom in the other direction.

Rule? (rewrite "fork_ldom" :dir rl)

Found matching substitution:

10.2. The carre proof 171

n gets n,

Rewriting using fork_ldom,

this simplifies to:

carre.1 :

|-------

{1} (fold(n, andg) o tri(n, delay)) o map(n, eqlg) o zip(n)

o

split(map(n, I) o fork(n), map(n, delays(n)) o (map(n, I) o fork(n)))

= (fold(n, andg o (I * delay)) o (map(n, I) o fork(n))) o eqlg

o split(I, delays(n))

Rule? (rewrite "split_fusion0" :dir rl)

Found matching substitution:

U gets map(n, I) o fork(n),

S gets map(n, delays(n)),

T gets fork(n),

R gets map(n, I),

Rewriting using split_fusion0,

this simplifies to:

carre.1 :

|-------

{1} (fold(n, andg) o tri(n, delay)) o map(n, eqlg) o zip(n)

o

((map(n, I) * map(n, delays(n))) o split(fork(n), map(n, I) o fork(n)))

= (fold(n, andg o (I * delay)) o (map(n, I) o fork(n))) o eqlg

o split(I, delays(n))

Rule? (apply (repeat (rewrite "fork_ldom")))

Applying

(REPEAT (REWRITE "fork_ldom")),

this simplifies to:

carre.1 :

|-------

{1} (fold(n, andg) o tri(n, delay)) o map(n, eqlg) o zip(n)

o ((map(n, I) * map(n, delays(n))) o split(fork(n), fork(n)))

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

Next we rewrite with zip map (.), zip split1, map fusion (.), split fusion0 (.),
and finally simplify with the rule of composition identity id0.

Rule? (assoc-rewrite "zip_map")

172 Chapter 10. A machine-checked derivation

rewriting with zip_map modulo associativity,

this simplifies to:

carre.1 :

|-------

{1} (fold(n, andg) o tri(n, delay)) o map(n, eqlg) o map(n, I * delays(n))

o zip(n)

o split(fork(n), fork(n))

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

Rule? (assoc-rewrite "zip_split1")

rewriting with zip_split1 modulo associativity,

this simplifies to:

carre.1 :

|-------

{1} (fold(n, andg) o tri(n, delay)) o map(n, eqlg) o map(n, I * delays(n))

o map(n, split(I, I))

o fork(n)

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

Rule? (assoc-rewrite "map_fusion")

rewriting with map_fusion modulo associativity,

this simplifies to:

carre.1 :

|-------

{1} (fold(n, andg) o tri(n, delay))

o map(n, (eqlg o (I * delays(n))) o split(I, I))

o fork(n)

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

Rule? (assoc-rewrite "split_fusion0")

rewriting with split_fusion0 modulo associativity,

this simplifies to:

carre.1 :

|-------

{1} (fold(n, andg) o tri(n, delay))

o map(n, eqlg o split(I o I, delays(n) o I))

o fork(n)

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

10.2. The carre proof 173

Rule? (apply (repeat (rewrite "id0")))

Applying

(REPEAT (REWRITE "id0")),

this simplifies to:

carre.1 :

|-------

{1} (fold(n, andg) o tri(n, delay)) o map(n, eqlg o split(I, delays(n)))

o fork(n)

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

Once again we want to assoc-rewrite with fork fusion1, a conditional
rewriting rule; as before, we want to provide the proviso as an antecedent,
for otherwise assoc-rewrite would produce redundant subgoals. This time
we do not have a ready-made lemma for the proviso so we introduce it by
case analysis. We prove the theorem assuming that the proviso holds, and
leave to a separate goal sequent the task of proving that it’s indeed true; or,
equivalently, that the negation of the proviso leads to a contradiction.

Rule? (case "determ?(eqlg o split(I, delays(n)))")

Case splitting on

determ?(eqlg o split(I, delays(n))),

this yields 2 subgoals:

carre.1.1 :

{-1} determ?(eqlg o split(I, delays(n)))

|-------

[1] (fold(n, andg) o tri(n, delay)) o map(n, eqlg o split(I, delays(n)))

o fork(n)

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

Rule? (assoc-rewrite "fork_fusion1" :dir rl)

rewriting with fork_fusion1 modulo associativity,

this simplifies to:

carre.1.1 :

[-1] determ?(eqlg o split(I, delays(n)))

|-------

{1} (fold(n, andg) o tri(n, delay)) o fork(n) o eqlg o split(I, delays(n))

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

Finally, we apply Horner’s rule. The result of rewriting with horner is a
sequent that contains Horner’s rule proviso as a consequent; by appeal to the
appropriate lemma, the main line of reasoning is concluded.

174 Chapter 10. A machine-checked derivation

Rule? (assoc-rewrite "horner")

rewriting with horner modulo associativity,

this simplifies to:

carre.1.1 :

[-1] determ?(eqlg o split(I, delays(n)))

|-------

{1} andg o (delay * delay) = delay o andg

{2} (fold(n, andg) o tri(n, delay)) o fork(n) o eqlg o split(I, delays(n))

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

Rule? (lemma "retiming_andg")

Applying retiming_andg

this simplifies to:

carre.1.1 :

{-1} andg o (delay * delay) = delay o andg

[-2] determ?(eqlg o split(I, delays(n)))

|-------

[1] andg o (delay * delay) = delay o andg

[2] (fold(n, andg) o tri(n, delay)) o fork(n) o eqlg o split(I, delays(n))

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

which is trivially true.

This completes the proof of carre.1.1.

We are now left with the task of proving the provisos for some of the rules
we applied. The first one we deal with is the one resulting from the case
analysis.

carre.1.2 :

|-------

{1} determ?(eqlg o split(I, delays(n)))

[2] (fold(n, andg) o tri(n, delay)) o map(n, eqlg o split(I, delays(n)))

o fork(n)

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

Formula 2 is not needed, so for clarity we hide it from the sequent. This is
because formula 1, the proviso, is always true. (In general, when performing
a case analysis, all of the context may be needed; note that the sequent
([], [A,B]) is equivalent to the sequent ([¬A], [B]), which amounts to proving
that from the negation of A, the thesis B follows.)

10.2. The carre proof 175

Rule? (hide 2)

Hiding formulas: 2,

this simplifies to:

carre.1.2 :

|-------

[1] determ?(eqlg o split(I, delays(n)))

We have a rule that says that to prove that the composition of two relations is
deterministic, it suffices to prove that both relations are deterministic. This
results in the splitting of the goal in two sequents.

Rule? (rewrite "comp_determ")

Found matching substitution:

S gets split(I, delays(n)),

R gets eqlg,

Rewriting using comp_determ,

this yields 2 subgoals:

carre.1.2.1 :

|-------

{1} determ?(eqlg)

[2] determ?(eqlg o split(I, delays(n)))

The first subgoal is solved by expanding the definition of eqlg (=̇) and then
applying the general lemma about retiming of a lifted relation.

Rule? (apply (then (hide 2) (expand "eqlg")))

Applying

(THEN (HIDE 2) (EXPAND "eqlg")),

this simplifies to:

carre.1.2.1 :

|-------

{1} determ?(lift2(LAMBDA x, y: inl(x = y)))

Rule? (rewrite "lift2_determ")

Found matching substitution:

f gets LAMBDA x, y: inl(x = y),

Rewriting using lift2_determ,

This completes the proof of carre.1.2.1.

176 Chapter 10. A machine-checked derivation

The second subgoal is further split in two separate subgoals, one for each
argument of split.

carre.1.2.2 :

|-------

{1} determ?(split(I, delays(n)))

[2] determ?(eqlg o split(I, delays(n)))

Rule? (apply (then (hide 2) (rewrite "split_determ")))

Applying

(THEN (HIDE 2) (REWRITE "split_determ")),

this yields 2 subgoals:

carre.1.2.2.1 :

|-------

{1} determ?(I)

[2] determ?(split(I, delays(n)))

Now we must prove that the identity relation is deterministic, which is easily
done by the general purpose tactic (grind).

Rule? (apply (then (hide 2) (grind)))

I rewrites I(y, x)

to (y = x)

I rewrites I(z, x)

to (z = x)

determ? rewrites determ?(I)

to FORALL (x: U[stream[plus]]), (y: U[stream[plus]]), (z: U[stream[plus]]):

(y = x) AND (z = x) IMPLIES y = z

Applying

(THEN (HIDE 2) (GRIND)),

This completes the proof of carre.1.2.2.1.

Finally, we must prove that ✁n is deterministic. This is fairly easy to do by
induction; but since the other remaining subgoal also calls for the same result,
it is better to have this proven as a separate lemma, rather than duplicating
the argument in the present proof. By appealing twice to delays determ,
the proof of carre is complete.

carre.1.2.2.2 :

10.2. The carre proof 177

|-------

{1} determ?(delays(n))

[2] determ?(split(I, delays(n)))

Rule? (rewrite "delays_determ")

Found matching substitution:

n gets n,

Rewriting using delays_determ,

This completes the proof of carre.1.2.2.2.

This completes the proof of carre.1.2.2.

This completes the proof of carre.1.2.

This completes the proof of carre.1.

carre.2 :

|-------

{1} determ?(delays(n))

[2] (fold(n, andg) o tri(n, delay)) o map(n, eqlg) o zip(n)

o split(fork(n), fork(n) o delays(n))

= (fold(n, andg o (I * delay)) o fork(n)) o eqlg o split(I, delays(n))

Rule? (rewrite "delays_determ")

Found matching substitution:

n gets n,

Rewriting using delays_determ,

This completes the proof of carre.2.

Q.E.D.

This concludes our work on the verification of (part of) the carré problem.

178 Chapter 10. A machine-checked derivation

10.3 Conclusions

We have shown how to formalize the theory of relations within the specifica-
tion language of PVS, which is based on higher order logic. We proved from
first principles all the rules of relational calculus, and Ruby, that we needed.
We demonstrated how a general-purpose verification system can be used to
do proofs in a point-free relational style.

Some of the proofs of the rules of the calculus and lemmas were for the
most part conducted by letting the automated proof procedures take care
of most of the work, and then leading the theorem prover step-by-step to
prove the remaining sequents that it could not prove automatically. The
proofs conducted in this manner are not compelling from the point of view
of human readers; however they require less labour than full step-by-step
proofs; and the theorems for which this strategy works are often the ones
that can be easily seen to be correct. Another proof strategy, that leads to
proofs that are more readable, is to lead the prover step-by-step until the
task is decomposed into sequents that are easy to prove, and then letting the
automated proof procedures take care of them.

But the main point of this work is to show that once the needed lemmas are
available, the proof of Ruby-style derivations can be done in a fashion that
is not too dissimilar to the corresponding paper-and-pencil proof.

One of the main obstacles to the use of systems like PVS is the ASCII nota-
tion, that is considerably less readable than mathematical notation (compare
the terms that appear in the PVS proof of the carre theorem to the ones that
appear in the corresponding derivation in page 60). The main difficulty in
following the verification is in the parsing of the terms. PVS has a facility for
producing LATEX versions of proofs and theories; but this can only be used
to embellish the presentation of proofs, while all interaction with the system
is done in ASCII. Since we already gave a mathematical-style justification
of the carré derivation, it seemed better to show the PVS material in the
same style as one would see it by working with the system; this may be more
useful to the reader who wants to reproduce our work.

It must be noted that PVS offers good assistance in the verification of theo-
rems, but very little assistance for the construction of solutions. In our view,
there are two main advantages in the use of systems like PVS. One is the un-
covering of all unstated assumptions (not to mention errors!) in one’s work.
In this respect, the work with PVS was somewhat disappointing, for no er-
rors were actually found in our work. The other advantage is that the effort
to express things in a language, that is more formal and poorer than con-

10.3. Conclusions 179

ventional mathematical language, may lead to simpler definitions and better
understanding.

180 Chapter 10. A machine-checked derivation

carre

plus_adt

plus_adt_map plus_adt_reduce zip

tuples

circuits

rel

tree_adt

tree_adt_maptree_adt_reducesets

tree_props

tree

Figure .: The hierarchy of theories by inclusion

10.3. Conclusions 181

(skolem!)

(apply−extensionality :hide? t)

(expand* "o" "I")

(iff)

(ground)

(skolem!)

(ground)

(inst 1 "x!2")

(assert)

Figure .: The structure of the proof of id0

182 Chapter 10. A machine-checked derivation

(defstep assoc-rewrite (lemma &optional (fnums *)

subst (target-fnums *)

(dir LR) (order IN))

(apply

(then*

(repeat (rewrite "comp_assoc" :dir rl :target-fnums target-fnums))

(repeat (then (rewrite lemma

:subst subst :fnums fnums :dir dir

:target-fnums target-fnums)

(rewrite "comp_assoc")))

(repeat (rewrite "comp_assoc" :dir rl))))

"Applies a rewriting rule modulo associativity of composition"

"rewriting with ~a modulo associativity")

Figure .: The assoc-rewrite proof strategy

10.3. Conclusions 183

(skolem 1 "n")

(assoc−rewrite "zip_tri")

(lemma "retiming_eqlg")

(assoc−rewrite ...)

(hide −1)

(rewrite "fork_fusion1")

(rewrite "fork_ldom" :dir rl)

(rewrite "split_fusion0" :dir rl)

(apply ...)

(assoc−rewrite "zip_map")

(assoc−rewrite "zip_split1")

(assoc−rewrite "map_fusion")

(assoc−rewrite "split_fusion0")

(apply (repeat (rewrite "id0")))

(case ...)

(assoc−rewrite ...)

(assoc−rewrite "horner")

(lemma "retiming_andg")

(propax)

(hide 2)

(rewrite "comp_determ")

(apply ...)

(rewrite "lift2_determ")

(apply ...)

(apply (then (hide 2) (grind))) (rewrite "delays_determ")

(rewrite "delays_determ")

Figure .: The proof tree of the carre theorem

184 Chapter 10. A machine-checked derivation

Chapter 11

Conclusions and discussion

It is customary to define Ruby circuits as relations between two streams,
which may be tuple-valued. In this thesis instead we define circuits as re-
lations between trees of streams; so we may have a relation between, say,
two pairs of streams, whereas in Ruby literature one would find a relation
between two pair-valued streams. The reason for this different choice is the
wish to depart as little as possible from relational calculus as defined in [0].
The standard relational definition of product, as defined in chapter 2, is

(x, y)〈R×S〉(z, v) ≡ x〈R〉z ∧ y〈S〉v.(.)

But then the product of two relations is a relation between two pairs of values.
In Ruby this is taken care of by using this variant definition of product:

[R, S] = z̃ip ◦ R×S ◦ z̃ip∪,(.)

where z̃ip is the relation that transforms a pair of streams into a stream of
pairs, defined by (.) at page 36. A similar thing applies to split. Now,
it is perfectly acceptable to build a calculus of circuits that uses (.) and
doesn’t use (.). But suppose we want the universe U to contain not just
streams but also other values such as, say, the integers. This is necessary
in order to define, e.g., mem (section 7.0). Then we have that product and
split are no longer defined over all relations, but only on relation between
streams. To overcome this undesirable fact, one can then define two products,
the ordinary one (.) and the product for circuits (.). Then one needs
two versions of the split operator; then two versions of the projections. This
causes a proliferation of operator symbols, which is unfortunate since the
relational calculus uses many operators already; and does not change the

185

186 Chapter 11. Conclusions and discussion

problem of (.) not being defined over all relations. For this reason we
prefer not to use (.) and accept the fact that a circuit is a relation between
arbitrary pairings (that is trees) of streams.

There is another possible advantage to employing (.) for circuits. San-
dum [47] notes that some Ruby circuits involving bundle are not imple-
mentable. For instance, [ῑ,B] satisfies

a〈[ῑ,B]〉b ≡ ∀(n :: ≪.(a.n) = ≪.(b.n)

∧ ≫.(a.2n) = ≪.≫.(b.n)

∧ ≫.(a.(2n+ 1)) = ≫.≫.(b.n)),

and any implementation of [ῑ,B] would require unbounded memory. This is
due to the fact that the two devices in parallel are supposed to read a pair-
valued stream. Hence they must work in synchrony. But ῑ×B reads from a
pair of streams, and an implementation where ῑ and B work asynchronously
is possible.

However, it is not clear how to make use of this apparent greater generality.
If the two streams read by a device R×S are read at different speeds, then
there should be some way to relate the state of R with the state of S; in
other words, we must have a way to define some T that when composed
as in T ◦ R×S can make use of the outputs of both R and S. Such a T
should be some kind of arbiter, that is able to accept actions from R and S
asynchronously. This is a line of investigation that we haven’t pursued; it look
promising as it hints at a way to define a version of Ruby for asynchronous
circuits.

Now we must admit that defining product as in (.) bears the disadvan-
tage that many definition are more complicated than what we’d have when
defining product by (.), notably the definition of delay and bundle; and
the proofs of the related properties are similarly more complicated. But this
is a problem only with the proofs of the rules of the calculus of Ruby; circuit
derivations are largely unaffected by our different choice of in the definition
of product, since most rules of the calculus, like fusion, hold both for (.)
and (.).

It is interesting to note that there is at least one calculus equality that does
not hold for ×, while it holds for [−,−]: (see the discussion at page 196): it
holds

B
∪

◦ B = [ι, ι],(.)

187

but not B∪
◦ B = ι×ι. Given that we wish to avoid (.), the best

alternative rule we can formulate is

B
∪

◦ B ◦ A = A,(.)

for A a shape-symmetric monotype; see theorem (B.) at page 196. It is
not clear whether this fact is an argument for or against our style of Ruby,
since there is a good reason, in terms of circuits interpretation, for not want-
ing (.) to hold. What the circuit on the lhs of (.) does is to take a pair
of values and sending them one at a time through a single wire, and then
recompose the pair. But there is no restriction on the type of the elements of
the pair; for instance, the first element may be a scalar wire, while the second
is a pair. This makes it difficult to imagine the interpretation of the internal
wire that connects the B∪ component with the B in the circuit B∪

◦ B, for
it must be a wire able to transmit values of widely differing shapes. On
the other hand, theorem (.) tells us the much weaker fact that, whenever
we can prove that all elements of a pair of wires recursively share the same
pairing structure, then it is possible to cancel composition with B∪

◦ B.

It may be countered that terms like B∪
◦ B may arise in the course of

calculations, but need never be implemented; and certainly theorem (.)
is useful for simplifying calculations. In conclusion, whether it is desirable or
not to define product so that (.) holds is a matter of opinion.

*
*

*

The informal picture interpretation of circuit terms that we used is essen-
tially monodimensional: the circuit extends horizontally. This is due to the
fact that the relations of our calculus are binary, so they are like a circuit
component with just two “ports”. In contrast, traditional circuit diagrams
extend in two dimensions: components may well have connections entering
and exiting in all directions.

It is common in Ruby to extend the picture interpretation to two dimensions,
by interpreting the second element of the left domain and the first element
of the right domain as “vertical”. Nevertheless, it’s nice to see that a lot of
ground can be covered by the simpler monodimensional picture interpreta-
tion, at least for the kind of circuits that we consider in this thesis.

A problem with the current state of Ruby is the absence of a textbook.
Existing expositions are in the form of lecture notes, and often quote laws
without proof. Laws that are often used without proof are the retiming

188 Chapter 11. Conclusions and discussion

and slowdown laws. We give full and detailed proofs for these laws in the
appendix.

Many Ruby laws are proved to hold for combinational circuits, and then
extended to arbitrary circuits by the “lifting theorem”, which states that for
“timeless” circuits (i.e., a circuit as defined by definition .), many laws can
be so extended. We feel no need for such theorem, since we found most Ruby
laws can be easily proved by standard relational calculus.

In conclusion, it is difficult to assess the usefulness of a calculus. In this
thesis there are no deep or difficult new theorems; on the contrary, we tried
to make everything uniformly straightforward. This work is about method
and notation: two things of paramount importance in Computing Science.
The whole discipline of “programming language design” is about finding con-
venient notations to express programming concepts.

Much of this work was driven by the desire to see how Ruby could handle
problems somewhat different from those one finds in the literature. It is clear
that Ruby shines in regular array computations, such as matrix multiplica-
tions or convolution filters; but the real limits of Ruby applicability have not
yet been clearly identified. A difficulty one often encounters when working
with Ruby is that wiring relations can quickly become unmanageable.

In our opinion, the strength of Ruby is in the fact that memory elements are
not named; this makes laws like the retiming law or the slowdown theorem
very simple to state and apply; in contrast, stating these laws for a notation
like Tangram would be difficult. On the other hand, this strength is also a
weakness, for the risk of getting bogged down with overly complicated wiring
relations. CSP-like notations have their own set of identity laws (Hoare [22]);
identifying the overlap and differences between CSP and Ruby laws could be
interesting further work.

One area where Ruby could be improved is in the handling of multiplexers,
or “if-then-else”. In its full generality this kind of component is shunned in
Jones [24], for the reason that it enjoys few useful laws. However, the kind
of circuits one can obtain without a choice component is limited. A first step
in using choice within Ruby is our “junc” component; it could be interesting
to try to generalize it, so to have a combinator that is more similar to “junc”
as defined by Aarts et al. [0].

It is arguable that computing with relations is a different paradigm that is
not nearly fully explored. It seems there are many tricks and techniques and
methods yet to be discovered; I look forward with curiosity and anticipation
to the results of future research.

Appendix A

Proofs of the delay and
retiming laws

This section contains proofs of the properties of delay and, in particular, the
retiming laws. The proof of (.) is as follows:

✁< = ι

≡ { definition of ✁, ι }

(µ(X 7→ ∂ ∪X×X))< = µ(X 7→ ῑ∪X×X)

⇐ { µ-fusion }

∀(X :: (∂ ∪X×X)< = ῑ ∪ X< ×X<)

⇐ { domains distribute through ∪ and × }

∂< = ῑ ∧ X< ×X< = X< ×X<

≡ { definition of ∂, ῑ }

true

The proof of the first part of (.) is as follows:

✁ ◦ ι×ι

= { definition of ✁ }

(∂ ∪✁×✁) ◦ ι×ι

= { composition distributes over union }

∂ ◦ ι×ι ∪ ✁×✁ ◦ ι×ι

= { ∂ is not defined for pairs, (.) }

✁×✁

189

190 Appendix A. Proofs of the delay and retiming laws

The proof of the second half, and of the corresponding properties of ✄, are
similar.

The next calculation establishes property (.).

✄ ◦ ✁ = ι

≡ { definition of ι and ✁ }

✄ ◦ µ(X 7→ ∂ ∪X×X) = µ(X 7→ ῑ∪X×X)

⇐ { µ-fusion }

∀(X :: ✄ ◦ (∂ ∪X×X) = ῑ∪ (✄ ◦ X)×(✄ ◦ X))

⇐ { calculus }

✄ ◦ ∂ = ῑ ∧ ∀(X :: ✄ ◦ X×X = (✄ ◦ X)×(✄ ◦ X))

≡ { property (.) }

✄ ◦ ∂ = ῑ

≡ { ✄ = ✁
∪ = (∂ ∪✁×✁)∪ = ∂∪ ∪✄×✄ }

(∂∪ ∪✄×✄) ◦ ∂ = ῑ

≡ { ∂ is not defined on pairs }

∂∪
◦ ∂ = ῑ

This last formula can be proved pointwise: for all streams a,b,

a〈∂∪
◦ ∂〉b

≡ { composition }

∃(c :: a〈∂∪〉c ∧ c〈∂〉b)

≡ { definition of primitive delay; calculus }

∃(c :: ∀(n :: a.n = c.(n+ 1) ∧ c.(n+ 1) = b.n))

≡ { calculus }

∀(n :: a.n = b.n)

The second equality in (.) can be proved by means of a very similar proof.

The proof of the retiming laws, equation (.) is by structural induction on
definition .. We begin by proving that (.) holds for any lifted relation
Ṙ. For all streams a and b :

a〈✁ ◦ Ṙ〉b

≡ { composition }

∃(c :: a〈✁〉c ∧ c〈Ṙ〉b)

191

≡ { definitions of ✁ and R; calculus }

∃(c :: ∀(n :: a.(n+ 1) = c.n ∧ c.n 〈R〉 b.n))

≡ { calculus }

∀(n :: a.(n+ 1) 〈R〉 b.n)

≡ { calculus }

∃(c :: ∀(n :: a.(n+ 1) 〈R〉 c.(n+ 1) ∧ c.(n+ 1) = b.n))

≡ { definitions of ✁ and R; calculus }

∃(c :: a〈Ṙ〉c ∧ c〈✁〉b)

≡ { composition }

a〈Ṙ ◦ ✁〉b

Next we show that (.) holds for the left projection. First, we need a little
lemma:

(a, b)〈✁〉(c, d)

≡ { by the definition of ✁ }

(a, b)〈∂ ∪✁×✁〉(c, d)

≡ { definition of union }

(a, b)〈∂〉(c, d)∨ (a, b)〈✁×✁〉(c, d)

≡ { ∂ is not defined on pairs; definition of product }

a〈✁〉c ∧ b〈✁〉d

Hence, it holds that (a, b)〈✁〉(c, d) ≡ a〈✁〉c ∧ b〈✁〉d. We may now proceed:
for all streams a,b and c,

a〈✁ ◦ ≪〉(b, c) ≡ a〈≪ ◦ ✁〉(b, c)

≡ { composition }

∃(d :: a〈✁〉d ∧ d〈≪〉(b, c)) ≡ ∃(d, e :: a〈≪〉(d, e) ∧ (d, e)〈✁〉(b, c))

≡ { definition of ≪, twice, and above lemma: }

∃(d :: a〈✁〉d ∧ d = b) ≡ ∃(d, e :: a = d ∧ d〈✁〉b ∧ e〈✁〉c)

⇐ { calculus }

a〈✁〉b ≡ a〈✁〉b

≡ { calculus }

true

The proof that (.) holds for the right projection is entirely similar. That
(.) holds for R := ✁ is trivial; for R := ✄ it is a consequence of (.).
For term we have:

192 Appendix A. Proofs of the delay and retiming laws

✁ ◦ term

= { (.) }

term

= { ✁> = I }

term ◦ ✁>

= { ⊤⊤ ◦ R> = ⊤⊤ ◦ R }

term ◦ ✁

Note that all the proofs we have given until now can be easily modified to
prove the corresponding properties for antidelay. We will then assume that
the reader is convinced that both parts of (.) hold for lifting, projections,
delays and term.

Suppose now that (.) holds for circuits R and S. We then have:

✁ ◦ R ◦ S

= { hypothesis on R }

R ◦ ✁ ◦ S

= { hypothesis on S }

R ◦ S ◦ ✁

So much for composition. For product we have:

✁ ◦ R×S

= { equation (.) }

(✁ ◦ R)×(✁ ◦ S)

= { hypothesis on R and S }

(R ◦ ✁)×(S ◦ ✁)

= { equation (.) }

R×S ◦ ✁

Similarly, for split:

✁ ◦ R △ S

= { equation (.) }

(✁ ◦ R) △ (✁ ◦ S)

= { hypothesis on R and S }

(R ◦ ✁) △ (S ◦ ✁)

193

= { equation (.) }

R △ S ◦ ✁

For converse, we have

✁ ◦ R∪

= { converse; ✄ is the converse of ✁ }

(R ◦ ✄)∪

= { by hypothesis (.) holds for R }

(✄ ◦ R)∪

= { converse }

R∪
◦ ✁

The last part of the proof makes use of the properties of loop and feedback,
equations (.):

✁ ◦ Rσ

= { loop-feedback }

✁ ◦ (ι △ ι ◦ R)̟

= { loop fusion, eq. (.) }

(✁ △ ι ◦ R)̟

= { equations (.) and (.) }

(ι △ ✄ ◦ ✁ ◦ R)̟

= { hypothesis on R }

(ι △ ✄ ◦ R ◦ ✁)̟

= { equation (.) }

(ι×✄ ◦ ι △ ι ◦ R ◦ ✁)̟

= { loop leapfrog }

(ι △ ι ◦ R ◦ ✁ ◦ ι×✄)̟

= { equations (.) and (.) }

(ι △ ι ◦ R ◦ ✁×ι)̟

= { loop fusion }

(ι △ ι ◦ R)̟ ◦ ✁

= { loop-feedback }

Rσ
◦ ✁

This concludes the proof of (.).

194 Appendix A. Proofs of the delay and retiming laws

Appendix B

Facts about bundle and slow

An essential property of bundle is

B ◦ B
∪ = ι(B.)

The proof is:

B ◦ B∪ = ι

≡ { definitions }

µ(X 7→ B ∪ X×X ◦ zip) ◦ B∪ = µ(X 7→ ῑ∪X×X)

⇐ { µ-fusion }

∀(X :: (B ∪ X×X ◦ zip) ◦ B∪ = ῑ∪ (X ◦ B∪)×(X ◦ B∪))

and for all X,

(B ∪ X×X ◦ zip) ◦ B∪

= { µ computation rule;

converse over union and composition }

(B ∪ X×X ◦ zip) ◦ (B∪ ∪ zip∪
◦ B∪ ×B∪)

= { distributivity; B is not defined on pairs }

B ◦ B∪ ∪ X×X ◦ zip ◦ zip∪
◦ B∪ ×B∪

= { pointwise calculations }

ῑ ∪ X×X ◦ B∪ ×B∪

= { fusion }

ῑ∪ (X ◦ B∪)×(X ◦ B∪)

195

196 Appendix B. Facts about bundle and slow

This completes the proof of (B.).

One could hypothesize that B∪
◦ B

?
= ι×ι should hold; yet it does not (see

chapter 11). In fact, for any two monotype A, we have that B∪
◦ B ◦ A 6= ⊥⊥

only if A has a “symmetric shape”. For example, it holds

B
∪

◦ B ◦ ῑ×ῑ = ῑ×ῑ(B.)

and also

B
∪

◦ B ◦ (ῑ×ῑ)×(ῑ×ῑ) = (ῑ×ῑ)×(ῑ×ῑ)

but:

B∪
◦ B ◦ (ῑ×ῑ)×ῑ

= { definition }

B∪
◦ (B ∪ B×B ◦ zip) ◦ (ῑ×ῑ)×ῑ

= { distributivity; B is not defined on (ῑ×ῑ)×ῑ }

B∪
◦ B×B ◦ zip ◦ (ῑ×ῑ)×ῑ

= { zip is only defined on pairs of pairs }

⊥⊥

Let’s formalize the concept of “having a symmetric shape”. Let A be a
monotype. We say that A is shape-symmetric, if

• A⊆ ῑ×ῑ, or

• there exist monotypes B and C such that A = B×C and both B and
C are shape-symmetric.

Now we claim that, if A is a shape-symmetric monotype,

B
∪

◦ B ◦ A = A(B.)

This can be shown by structural induction on the definition of shape sym-
metry. If A⊆ ῑ×ῑ, then

B∪
◦ B ◦ A

= { A⊆ ῑ×ῑ }

B∪
◦ B ◦ A

= { by pointwise reasoning }

A

197

Suppose now A can be written B×C, for shape symmetric B and C:

B∪
◦ B ◦ B×C

= { a shape-symmetric monotype can always

be written as a product of two monotypes:

say, B = B0×B1 and C = C0×C1 }

B∪
◦ B ◦ (B0×B1)×(C0×C1)

= { definition of bundle on pair of pairs }

zip ◦ (B∪
◦ B)×(B∪

◦ B) ◦ zip ◦ (B0×B1)×(C0×C1)

= { property of zip }

zip ◦ (B∪
◦ B)×(B∪

◦ B) ◦ (B0×C0)×(B1×C1) ◦ zip

= { fusion }

zip ◦ (B∪
◦ B ◦ B0×C0)×(B∪

◦ B ◦ B1×C1) ◦ zip

= { B0×C0 and B1×C1 must be shape-symmetric;

by induction }

zip ◦ (B0×C0)×(B1×C1) ◦ zip

= { property of zip }

(B0×B1)×(C0×C1)

= { by the definitions of B0, B1, C0 and C1 }

B×C

This concludes the proof of (B.).

One interesting theorem about B is the following:

B ◦ ✁=✁ ◦ ✁ ◦ B

Proof: let’s begin by supposing the left domain is not a pair. We have:

a〈B ◦ ∂×∂〉(b, c)

≡ { definitions of bundle, primitive delay and composition }

∃(d, e :: ∀(n :: a.2n = d.n ∧ a.(2n+ 1) = e.n)

∧ ∀(n :: d.n = b.(n− 1) ∧ e.n = c.(n− 1)))

≡ { single-point rule }

∀(n :: a.2n = b.(n− 1) ∧ a.(2n+ 1) = c.(n− 1))

≡ { change of dummy: n := m+ 1 }

∀(m :: a.(2m+ 2) = b.m ∧ a.(2m+ 3) = c.m)

198 Appendix B. Facts about bundle and slow

≡ { single-point rule }

∃(d :: ∀(n :: a.n = d.(n− 2))

∧ ∀(m :: d.2m = b.m ∧ d.(2m+ 1) = c.m))

≡ { definitions of bundle, primitive delay and composition }

a〈∂ ◦ ∂ ◦ B〉(b, c)

Hence, since ∂ ◦ B=✁ ◦ B and B ◦ ∂×∂ = B ◦ ✁, we have

✁ ◦ ✁ ◦ B=B ◦ ✁(B.)

Armed with this lemma, we return to the general proof. We will try to find
some function H such that

✁ ◦ ✁ ◦ B= µH =B ◦ ✁(B.)

The first part of this equation expands as follows:

✁ ◦ ✁ ◦ B= µH

≡ { definition }

✁ ◦ ✁ ◦ µ(X 7→ B ∪ X×X ◦ zip) = µH

⇐ { µ-fusion }

∀(X :: ✁ ◦ ✁ ◦ (B ∪ X×X ◦ zip) =H.(✁ ◦ ✁ ◦ X))

≡ { calculus }

∀(X :: ✁ ◦ ✁ ◦ B ∪ ✁ ◦ ✁ ◦ X×X ◦ zip = H.(✁ ◦ ✁ ◦ X))

and the second part is

B ◦ ✁= µH

≡ { definition }

µ(X 7→ B ∪ X×X ◦ zip) ◦ ✁ = µH

⇐ { µ-fusion }

∀(X :: (B ∪ X×X ◦ zip) ◦ ✁=H.(X ◦ ✁))

≡ { calculus }

∀(X :: B ◦ ✁ ∪ X×X ◦ zip ◦ ✁ = H.(X ◦ ✁))

Let’s define

H.X = B ◦ ✁ ∪ X×X ◦ zip

We obtain, for all X:

199

H.(X ◦ ✁)

= { definition }

(X ◦ ✁)×(X ◦ ✁) ◦ zip

= { fusion }

X×X ◦ ✁×✁ ◦ zip

= { zip is defined on pairs of pairs }

X×X ◦ (✁×✁)×(✁×✁) ◦ zip

= { pointwise reasoning }

X×X ◦ zip ◦ (✁×✁)×(✁×✁)

= { delay }

X×X ◦ zip ◦ ✁

and

H.(✁ ◦ ✁ ◦ X)

= { definition }

(✁ ◦ ✁ ◦ X)×(✁ ◦ ✁ ◦ X) ◦ zip

= { fusion }

✁×✁ ◦ ✁×✁ ◦ X×X ◦ zip

= { delay }

✁ ◦ ✁ ◦ X×X ◦ zip

These last two calculations, together with (B.), prove (B.).

Next we see a very useful theorem: slow distributes through product, split,
composition, converse, loop and feedback.

slow .(R ◦ S) = slow .R ◦ slow .S
slow .(R×S) = slow .R× slow .S
slow .(R △ S) = slow .R △ slow .S
slow .(R∪) = (slow .R)∪

slow .(R̟) = (slow .R)̟

slow .(Rσ) = (slow .R)σ

(B.)

The proof for composition is:

slow .R ◦ slow .S

= { definition }

200 Appendix B. Facts about bundle and slow

B ◦ R×R ◦ B∪
◦ B ◦ S×S ◦ B∪

= { (B.) }

B ◦ R×R ◦ S×S ◦ B∪

= { identity, fusion }

B ◦ (R ◦ S)×(R ◦ S) ◦ B∪

= { definition }

slow .(R ◦ S)

For product, we have:

slow .(R×S)

= { definition }

B ◦ (R×S)×(R×S) ◦ B∪

= { B on pairs of pairs }

B×B ◦ zip ◦ (R×S)×(R×S) ◦ zip ◦ B∪ ×B∪

= { properties of zip (.) }

B×B ◦ (R×R)×(S×S) ◦ B∪ ×B∪

= { fusion; definition }

slow .R× slow .S

For split, it is enough to show that slow .(ι△ ι) = ι△ ι; the result then follows
from the distributivity of slow through composition and product.

slow .(ι △ ι)

= { definition }

B ◦ (ι △ ι)×(ι △ ι) ◦ B∪

= { B on pairs of pairs }

B×B ◦ zip ◦ (ι △ ι)×(ι △ ι) ◦ B∪

= { properties of zip (.) }

B×B ◦ (ι×ι) △ (ι×ι) ◦ B∪

= { B∪ is deterministic; fusion }

(B ◦ ι×ι ◦ B∪) △ (B ◦ ι×ι ◦ B∪)

= { identity; equation (B.) }

ι △ ι

For converse,

201

slow .R∪

= { definition }

B ◦ R∪ ×R∪
◦ B∪

= { converse over product }

B ◦ (R×R)∪ ◦ B∪

= { converse is idempotent }

(B ◦ (R×R)∪ ◦ B∪)∪∪

= { converse over composition }

(B∪∪
◦ (R×R)∪∪

◦ B∪)∪

= { idempotency, twice }

(B ◦ R×R ◦ B∪)∪

= { definition }

(slow .R)∪

For loop,

slow .R̟

= { definition }

B ◦ R̟ ×R̟
◦ B∪

= { loop (.) }

B ◦ (zip ◦ R×R ◦ zip)̟ ◦ B∪

= { loop fusion (.) }

(B×ι ◦ zip ◦ R×R ◦ zip ◦ B∪ × ι)̟

= { zip is defined on pairs of pairs }

(B×ι ◦ ι×(ι×ι) ◦ zip ◦ R×R ◦ zip ◦ B∪ × ι)̟

= { lemma (B.) }

(B×ι ◦ ι×(B∪
◦ B ◦ ι×ι) ◦ zip ◦ R×R ◦ zip ◦ B∪ × ι)̟

= { fusion, identity }

(B×(B∪
◦ B) ◦ zip ◦ R×R ◦ zip ◦ B∪ × ι)̟

= { fusion, loop leapfrog (.) }

(B×B ◦ zip ◦ R×R ◦ zip ◦ B∪ ×B∪)̟

= { R is defined on pairs }

(B ◦ R×R ◦ B∪)̟

= { definition }

(slow .R)̟

202 Appendix B. Facts about bundle and slow

For feedback,

slow .Rσ

= { loop-feedback (.) }

slow .(ι △ ι ◦ R)̟

= { distributivity of slow (see above) }

(ι △ ι ◦ slow .R)̟

= { loop-feedback (.) }

(slow .R)σ

This concludes the proof of (B.).

The main theorem about slow is that, for R a circuit, slow .R is equal to
R with all delays doubled. The proof is by induction on definition .. We
begin with delay; this is a corollary of theorem (B.):

B ◦ ✁×✁ ◦ B∪

= { delays and (B.) }

✁ ◦ ✁ ◦ B ◦ B∪

= { equation (B.) }

✁ ◦ ✁

We continue with a lifted relation.

a〈Ṙ ◦ B〉(b, c)

≡ { composition }

∃(d :: a〈Ṙ〉d ∧ d〈B〉(b, c))

≡ { definition }

∃(d :: a〈Ṙ〉d ∧ ∀(n :: b.n= d.(2n) ∧ c.n= d.(2n+ 1)))

≡ { definition of lifted relation }

∃(d :: ∀(n :: b.n= d.(2n) ∧ c.n= d.(2n+ 1)

∧ a.(2n) 〈R〉 b.n ∧ a.(2n+ 1) 〈R〉 c.n))

≡ { single-point rule }

∀(n :: a.(2n) 〈R〉 b.n ∧ a.(2n+ 1) 〈R〉 c.n)

and

203

a〈B ◦ Ṙ×Ṙ〉(b, c)

≡ { calculus }

∃(d, e :: a〈B〉(d, e) ∧ (d, e)〈Ṙ×Ṙ〉(b, c))

≡ { calculus }

∃(d, e :: ∀(n :: d.n= a.2n ∧ e.n= a.(2n+ 1) ∧ d.n 〈R〉 b.n ∧ e.n 〈R〉 c.n))

≡ { calculus }

∀(n :: a.(2n) 〈R〉 b.n ∧ a.(2n+ 1) 〈R〉 c.n)

Hence, Ṙ ◦ B = B ◦ Ṙ×Ṙ. A similar proof establishes the same result for a
two-inputs lifted relation (i.e., a relation Ṙ such that Ṙ = Ṙ ◦ ι×ι).

The case of the identity relation is trivial, given equation (B.):

B ◦ ι×ι ◦ B
∪ = B ◦ B

∪ = ι

Next we see the left projection: for a through e arbitrary pairings of streams,

a〈≪ ◦ B〉((b, c), (d, e))

≡ { composition }

∃(f, g :: a〈≪〉(g, f) ∧ (g, f)〈B〉((b, c), (d, e)))

≡ { projection }

∃(f :: (a, f)〈B〉((b, c), (d, e)))

≡ { definition of B }

∃(f :: (a, f)〈B×B ◦ zip〉((b, c), (d, e)))

≡ { definition of zip }

∃(f :: (a, f)〈B×B〉((b, d), (c, e)))

≡ { definition of product }

∃(f :: a〈B〉(b, d) ∧ f〈B〉(c, e))

≡ { B is deterministic, hence f is uniquely determined }

a〈B〉(b, d)

≡ { calculus }

a〈B ◦ ≪×≪〉((b, c), (d, e))

For term we have, for arbitrary collections of wires a,b,c and d:

(a, b)〈B ◦ term×term〉(c, d)

204 Appendix B. Facts about bundle and slow

≡ { composition, definition of term }

∃(e, f :: (a, b)〈B〉((e, e), (f, f)))

≡ { definition of B }

∃(e, f :: (a, b)〈B×B ◦ zip〉((e, e), (f, f)))

≡ { definition of zip }

∃(e, f :: (a, b)〈B×B〉((e, f), (e, f)))

≡ { product }

∃(e, f :: a〈B〉(e, f) ∧ b〈B〉(e, f))

≡ { B is deterministic }

a= b

≡ { single-point rule }

∃(e :: a= b ∧ e〈B〉(c, d))

≡ { definition of term }

∃(e :: (a, b)〈term〉e ∧ e〈B〉(c, d))

≡ { composition }

(a, b)〈term ◦ B〉(c, d)

So much for the base of the induction over definition .. The induction step
is an immediate consequence of theorem (B.).

Bibliography

[0] Chritiene Aarts, Roland Backhouse, Paul Hoogendijk, Ed Voermans,
and Jaap van der Woude. A relational theory of datatypes. Avail-
able at ftp://ftp.win.tue.nl/pub/math.prog.construction/book.
dvi, December 1992.

[1] Roland Backhouse. Making formality work for us. EATCS Bulletin,
38:219–249, June 1989.

[2] Roland Backhouse. The calculational method. Information Processing

Letters, 53(3):121, 1995.

[3] Roland C. Backhouse. Specification and proof of a regular language
recognizer in synchronous CCS. Technical Report CSM-53, University
of Essex, 1983.

[4] Roland C. Backhouse. Program Construction and Verification. Prentice-
Hall, 1986.

[5] John Backus. Can programming be liberated from von Neumann’s style?
In ACM Turing Award Lectures. The First Twenty Years. 1966-1985.
ACM Press, 1987.

[6] Richard S. Bird. A calculus of functions for program derivation. In D.A.
Turner, editor, Research Topics in Functional Programming, University
of Texas at Austin Year of Programming Series. Addison-Wesley, 1988.

[7] Richard S. Bird and Oege de Moor. Algebra of Programming. Prentice-
Hall International, 1996.

[8] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press,
1979.

[9] C. Brink and G. Schmidt, editors. Relational Methods in Computer

Science. Springer, 1997.

205

206 Bibliography

[10] Avra Cohn and Mike Gordon. A mechanized proof of correctness of
a simple counter. In K. McEvoy and J.V. Tucker, editors, Theoretical
Foundations of VLSI Design, Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 1990.

[11] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[12] Edsger W. Dijkstra, editor. Formal Development of Programs and

Proofs. University of Texas at Austin Year of Programming Series.
Addison-Wesley, 1990.

[13] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Pro-

gram Semantics. Texts and monographs in Computer Science. Springer-
Verlag, 1990.

[14] Henk Doornbos, Roland Backhouse, and Jaap van der Woude. A cal-
culational approach to mathematical induction. Theoretical Computer

Science, 179(1–2):103–135, 1 June 1997.

[15] Henk Doornbos, Netty van Gasteren, and Roland Backhouse. Programs
and datatypes. In C. Brink and G. Schmidt, editors, Relational Methods

in Computer Science. Springer, 1997.

[16] W.H.J. Feijen and Lex Bijlsma. Exercises in formula manipulation.
In Edsger W. Dijkstra, editor, Formal Development of Programs and

Proofs, University of Texas at Austin Year of Programming Series.
Addison-Wesley, 1990.

[17] Michael J. Foster. Specialized Silicon Compilers for Language Recog-

nition. PhD thesis, Computer Science Department, Carnegie Mellon
University, 1984.

[18] M.J. Foster and H.T. Kung. Recognize regular languages with pro-
grammable building blocks. Journal of Digital Systems, 4(6):323–332,
1982.

[19] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete

Mathematics. Addison-Wesley, 1989.

[20] David Gries. The Science of Programming. Springer-Verlag, 1981.

[21] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

Bibliography 207

[22] C.A.R. Hoare, I.J. Hayes, He Jifeng, C.C. Morgan, A.W. Roscoe, J.W.
Sanders, I.H. Sorensen, J.M. Spivey, and B.A. Sufrin. Laws of program-
ming. Communications of the ACM, 30(8):672–686, 1987.

[23] Graham Hutton. Between Functions and Relations in Calculating Pro-

grams. PhD thesis, Dept. of Computer Science, University of Glasgow,
June 1993. Available at http://www.cs.nott.ac.uk/Department/

Staff/gmh.

[24] Geraint Jones. Designing circuits by calculation. Technical Report PRG-
TR-10-90, Programming Research Group, Oxford University Computing
Laboratory, April 1990. Available at http://www.comlab.ox.ac.uk/

oucl/users/geraint.jones/publications.

[25] Geraint Jones and Mary Sheeran. Circuit design in Ruby. In
Jørgen Staunstrup, editor, Formal Methods for VLSI Design. IFIP WG

10.5 Lecture Notes. North-Holland, 1990. A revised version is avail-
able at http://www.comlab.ox.ac.uk/oucl/users/geraint.jones/

publications.

[26] Geraint Jones and Mary Sheeran. Deriving bit-serial circuits in Ruby.
In Arne Halaas and Peter B. Denyer, editors, IFIP Transactions A-1,

VLSI 91. North-Holland, 1992. Available at http://www.comlab.ox.

ac.uk/oucl/users/geraint.jones/publications.

[27] A. Kaldewaij and G. Zwaan. A systolic design for acceptors of regular
languages. Science of Computer Programming, 15(2):171–183, 1990.

[28] Randy H. Katz. Contemporary Logic Design. Addison-Wesley, 1994.

[29] Thomas Kropf. IFIP WG10.5 benchmark circuits for hardware verifica-
tion. Available at http://goethe.ira.uka.de/hvg, 1996.

[30] F. Thomson Leighton. Introduction to Parallel Algorithms and Archi-

tectures. Morgan Kaufman, 1992.

[31] Charles E. Leiserson. Area-Efficient VLSI Computation. MIT Press,
1983.

[32] Charles E. Leiserson and James B. Saxe. Optimizing synchronous sys-
tems. Journal of VLSI and Computer Systems, 1(1):41–63, 1983.

[33] Charles E. Leiserson and James B. Saxe. Retiming synchronous cir-
cuitry. Algorithmica, 6:5–35, 1991.

208 Bibliography

[34] Wayne Luk. Specifying and developing regular heterogeneous designs.
In Luc J. M. Claesen, editor, Formal VLSI Specification and Synthesis.

VLSI Design Methods-I. North-Holland, 1990.

[35] Wayne Luk. Systematic serialisation of array-based architectures. Inte-
gration, 14(3):333–360, 1993. Available at ftp://ftp.comlab.ox.ac.
uk/pub/Documents/techpapers/Wayne.Luk.

[36] Grant Malcolm. Data structures and program transformation. Science

of Computer Programming, 14:255–279, 1990.

[37] Lambert Meertens. Algorithmics — towards programming as a mathe-
matical activity. In J.W. de Bakker, M. Hazewinkel, and J.K. Lenstra,
editors, Proceedings CWI Symposium on Mathematics and Computer

Science, number 1 in CWI Monographs, pages 289–334. North-Holland,
1986.

[38] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[39] Eindhoven University of Technology Mathematics of Program Construc-
tion Group. Fixed point calculus. Information Processing Letters,
53(3):131–136, February 1995.

[40] Sam Owre, John Rushby, and Natarajan Shankar. PVS: a prototype
verification system. In Proceedings of the 11th International Conference

on Automated Deduction, number 607 in LNCS. Springer-Verlag, 1992.

[41] Ian Page. Constructing hardware-software systems from a sin-
gle description. Journal of VLSI Signal Processing, 1(12):87–107,
1996. Available at ftp://ftp.comlab.ox.ac.uk/pub/Documents/

techpapers/Ian.Page.

[42] L. C. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi,
editor, Logic and Computer Science. Academic Press, 1990.

[43] Lawrence C. Paulson. ML for the Working Programmer. Cambridge
University Press, 1991.

[44] O. Rasmussen. A Ruby proof system. Technical Report ID–TR: 1995-
161, Dept. of Computer Science, Technical University of Denmark, De-
cember 1995.

[45] Martin Rem. The carré problem. In Simplex Sigillum Veri, Een Liber

Amicorum voor prof. dr. F.E.J. Kruseman Aretz, pages 279–284. Tech-
nische Universiteit Eindhoven, December 1995.

Bibliography 209

[46] Frans Rietman. A Relational Calculus for the Design of Distributed

Algorithms. PhD thesis, University of Utrecht, 1995.

[47] Ole Sandum. Multiple clocks and Ruby. Technical Report ID–TR: 1994-
153, Dept. of Computer Science, Technical University of Denmark, Au-
gust 1994. Available by FTP at ftp://ftp.it.dtu.dk/pub/Ruby/

mcar.ps.Z.

[48] Frits D. Schalij. Tangram manual. Technical Report Nat. Lab. Technical
Note Nr. UR 008/93, Philips Electronics N. V., 1996.

[49] Robin Sharp and Ole Rasmussen. An introduction to Ruby. 2nd edition.
Technical report, Dept. of Computer Science, Technical University of
Denmark, 1995. Available at ftp://ftp.it.dtu.dk/pub/Ruby/intro.
ps.Z.

[50] Matteo Vaccari and Roland Backhouse. Deriving a systolic regular lan-
guage recognizer. In Richard Bird and Lambert Meertens, editors, Al-
gorithmic Languages and Calculi. Chapman & Hall, 1997.

[51] Kees van Berkel. Handshake Circuits: an Asynchronous Architecture for

VLSI Programming. Cambridge University Press, 1993.

[52] Kees van Berkel and Martin Rem. VLSI programming of asynchronous
circuits for low power. Nat. Lab. Technical Note Nr. UR 005/94, Philips
Electronics N.V., 1994.

[53] A.J.M. van Gasteren. On the Shape of Mathematical Arguments. Num-
ber 445 in LNCS. Springer-Verlag, 1990.

Index

+n, 62
Ṙ▽Ṡ, 33
ℓ, 104
η, 105
κ, 98, 101
ccn, 98
cmx , 57
a[n,m), 84
ρ, 91, 95
τ , 90
↑, 62
υ, 92, 95
x〈R〉y, 21
⊥⊥, 22
⊤⊤, 22
≫, 24
≪, 24
B, 41
Bn, 54
B, 41
Bn, 54
∂, 31
✄, 31
✁, 31
E ;E, 82
E∗, 82
E+ E, 82
I, 22
ῑ, 31
ι, 31
Kx, 32
↑, 17
µf , 18

µ-fusion, 19
N, 23
R<, 23
R>, 23
R ◦ S, 22
R △ S, 24
R∗, 24
Rσ, 33
R̟, 33
R∪, 23
R×S, 24
Ṙ, 30
T, 82
tt , 83

antidelay, 31
append , 56

bend , 91
bundle, 41

cc, 98
ccli , 98
circuit, 30

combinational, 34
definition, 34
systolic, 36

closure
reflexive and transitive, 24

cntn, 62
combinational circuit, 34
combinational path, 34
computation rule, 18
constant circuit, 32

210

Index 211

contra-flow, 43
converse, 23
cyclic multiplexer, 57

delay, 31
antidelay, 31
primitive, 31

delay introduction, 32
deterministic relation, 22
diagonal rule, 19

feedback, 33
fixed point, 18
fold , 50
fork , 51
fusion, 24

µ-fusion, 19
map, 48
simple µ-fusion, 19

Geraint Jones, 29
Gofer, 125

Horner’s rule, 52, 61

I, 22
indirect equality, 17
induction rule, 18

junc, 33

Knaster-Tarski theorem, 18

latency time, 45
lattice, 22

complete, 18
Lazy ML, 107
left condition, 23
left domain, 23
lifting, 30
loop, 33

fusion, 33
leapfrog, 33

loop-feedback, 33
lsh, 39

map, 48
map fusion, 48
Mary Sheeran, 29
max, 17
mem, 83
monotype, 23

operational interpretation, 35

picture interpretation of a circuit, 34
pipelining, 45
plumb, 92
pointwise ordering, 19
prefix point, 18
primitive delay, 31
primitive stream identity, 31
product, 24

n-wide, 47
projection, 24

reflexive, transitive closure, 24
relation, 21
reorg , 89
retiming, 39
right condition, 23
right domain, 23
rolling rule, 18
rot , 56
rsh, 39
Ruby, 29

shape symmetry, 196
simple µ-fusion, 19
slow , 41
slowdown, 41

proof of theorem, 202
split, 24
str , 91
stream, 30

212 Index

identity, 31
primitive identity, 31

swap, 36
systolic circuit, 36

Tangram, 43, 125
term, 32
times, 24
tri , 51
trn, 55
tt , 83
tuple, 47

well founded, 25
wiring relations, 36
wok, 23

zip, 37
z̃ip, 36
zipn, 52

