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1 Problems with numbers

1.1 Solved example: compute factorial — value: 0 points

The factorial function is defined by
n=1%2%---x(n—1)xn
Examples:
e input 0, output 1
e input 1, output 1
e input 3, output 6
Spec:

{true } S{post: x=n!}

Invariant:

inv: x = k! introducing new variable k

Implementation:

k:=0;x:=1

{x=kl «0'=1}

while k #n
{x=kIANk#n}
xXi=xxk
k:=k+1
{x=k!}

end

{x=kIAk=n}

{ therefore, x =n!}
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1.2 Compute Fibonacci — value: 100 points

The Fibonacci function is defined by

0
)=1

Fin+1)+Fn) formn>0
Examples:

e input: 0, output: 0

e input: 1, output: 1

e input: 2, output: 1

e input: 6, output: 8

An extra requirement: recursive programs are not allowed! You are restricted to iterative pro-
grams.

1.3 Compute a table of squares — value: 100 points

You are given an array a of size a.size. Initialize it to the sequence of squares. Examples:

a.size=0 output: a =]
a.size=1 output: a = [0]
a.size =6 output: a =[0,1,4,9, 16, 25]

Additional requirement: you are not allowed to use multiplication!

1.4 Compute c™ — value: 100 points

Examples
e input (2,0), output 1
e input (2,3), output 8

e input (3,4), output 81

1.5 Compute c™ in logarithmic time — value: 200 points

The spec and examples are the same as in the previous problem, but you have the additional
requirement of executing in logarithmic time. You can do it because when the exponent is even,

CZ*n — Cn " Cn
which means that, for instance, ¢*® = (c8)? = ((c*)2)? = (((c?)?)?)?, which can be computed with
4 multiplications instead of 15. Hint: let the running variable decrease from n to 0 instead of
the opposite.



2 Arrays

2.1 Solved example: Separate odd and even numbers — value: 0 points
Rearrange an array in place so that the even values are to the left and the odd values to the right.
Examples

e input [], output []
e input [1,2,3,4,5], output [2,4,1,3,5]

k N
odd \ even ‘

Spec ’O

var a:array [0,N) of integer
{true } S{ all_even[0,k) A all odd[k,N) }
where

all_even[x,y) = Vi:x<i<y:even(alil)

k ] N
odd ‘ ? ‘ even ‘

0
Invariant ‘

inv: all_even[0,k) A all_oddl[j, N)

Implementation

k:=0;5:=N
{inv: all_even[0,0) A all _odd[N,N) }
while j # k
{invAj#k}
if even(alk])
ki=k+1
else
swap(a[kl, afj])
ji=j—1
end
{inv}
end
{invAj=k}
{ post }



2.2 Remove zeros — value: 100 points
You must change array a in place by moving all the non-zero elements to the left. You must also
set k to the number of non-zero elements. Examples:

e input a =[], output a=1[,k=0

e input a = [3], output a = [3],k =1

e input a = [0], output a =[?],k =0

e input a =[1,0,0,3,0], output a =[1,3,7,7,7],k =2

2.3 Compress sequences — value: 150 points
Change array a in place by substituting sequences of 2 or more equal elements with a single
element. Set k to the number of remaining elements. Examples:

e input a = [2], output a =[2],k =1

e input a = [3,3, 3], output a = [3,7,7],k =1

e input a =[1,3,3,3,1,1,3], output a = [1,3,1,3,7,7,7, k =4

2.4 The famous Dutch national flag problem — value: 150 points

You are given an array of elements that can be red, blue or white. The object is to reorder the
array so that the red elements are left, the white in the middle and the blue to the right. The
reordering must be done by swaps.

Examples
input: (| output: [|
input: [w] output: [w]
input: [r,b,T,w,b,w] output: [r,T,w,w,b,b]

2.5 Merge two arrays — value: 150 points

You are given three arrays a, b, ¢, with c.size = a.size + b.size. Assume that a and b are sorted.
Copy them to c, preserving the order.

Examples:
a=[3,5] b= ¢ =[3,5]
a=[3,8] b=1[3,7,9] c=1[3,3,7,8,9]



2.6 Binary search — value: 200 points

Given a sorted array a and value v, write a program that will find the index of v in the array.
The program should execute in logarithmic time.

Examples:
a=|1 v=3 k =
a=11,3, v=2 k=-1

3 References

Recommended textbooks:

e Roland Backhouse, Algorithmic Problem Solving, http://www.cs.nott.ac.uk/“rcb/G51APS/
aps.ps. A fun textbook that introduces programming techniques as ways to solve mathe-
matical puzzles.

¢ Roland Backhouse, Program Construction: Calculating Implementations from Specifica-
tions, Wiley, 2003. The sequel to Algorithmic Problem Solving; applies the same techniques
to the construction of programs.

o Edward Cohen, Programmaing in the 1990s, Springer 1990. Another good textbook.
Other books:

e HEdsger W. Dijkstra, A Discipline of Programmaing, Prentice-Hall, 1976. Introduces an
incremental way of constructing programs, as opposed to the mathematical tradition of
writing a program first and the proof later. “To develop a proof and program hand in hand”.

e Antonietta van Gasteren, On the Shape Of Mathematical Arguments, Springer, 1990. A
dissertation on how to present mathematical arguments in a way that is simple and speaking,
by sharing the workload more equally between the author and the reader.

e Jon Bentley, Programmang Pearls, 2nd edition, Addison-Wesley, 2000. Chapters 4 and
5 are about writing a correct implementation of the binary search algorithm, which is
surprisingly difficult to get right. There are useful hints on how to apply invariants from
the point of view of a programming practictioner.
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