Tecnologia e Applicazioni
Internet 2009/10

Lezione | - Il principio aperto/chiuso

Matteo Vaccari
http://matteo.vaccari.name/
vaccari@pobox.com

00

Slides by Dave Nicolette
Che cos’e il debito tecnico?

[T
JARN
{ =
/ l / [\ /
N Y
N >{
7
Cost of change: C Cost of change: C + n Cost of change: C x n
[
JARNN ™ 7
A i\ A
\ "N
e N\ N [
X N D
| ?
e N

n

Cost of change: C 1 Cost of change: C 7

The little idealized class models appear one by one with mouse clicks.

The concept illustrated here is that the cost of changing the software increases as the “messiness” of the system design (as expressed in the
living code, not necessarily in a design document) increases. Eventually software becomes so hard to understand and so risky to modify that
it is no longer worth the effort to enhance it. This is what happens when you allow design debt to pile up over time.

Slides by Dave Nicolette
Pagare le rate del debito tecnico

v @ 6 @ 6

T
| Tests for | Tests for
new features / new features
T T
l —— / l —
T T
T ™ T
|

Starting code base Changes implemented Code cleaned up
Cost of change: C Cost of change: C + n Cost of change: C

The slide comes up with step 1 visible. The remaining steps are displayed one by one by mouse clicks.

This is how TDD alleviates the problem of “compound interest” in design debt. By working in tight red-green-refactor loops, design debt is
paid off in small installments throughout the development process. We never allow “interest” to accumulate to a high level. You might want to
avoid the word “refactor” depending on the audience. “Cleaned up code” might communicate the concept more intuitively.

Slides by Dave Nicolette
Effect of design debt on development cost during a project

more
) 0"
-
S C
)
©
O
-
3
— c”
5]
o
O
N Q@
e
C+n 2
C)8
®

less design debt more

Now we want to explain why the managers/customers/product owners care about the concept of design debt. They may still see it as a
technical issue. The next several slides illustrate the effect of mounting design debt on the cost of changing a system, the quality of a
system, the cost of supporting a system in production, and the useful lifetime of a system.

This slide shows the cost of change that was described in an earlier slide, but as a trend line. As design debt mounts, the cost of adding
features to a system rises to an untenable level.

Slides by Dave Nicolette
Effect of design debt on team productivity during a project

features per iteration (velocity)

ess design debt - more

Design debt reduces the productivity of the development team because as the size and complexity of the solution increase, a messy (living)

design makes every modification more difficult. They must spend additional time analyzing the potential effect of any change they propose to
make. They can easily overlook a piece of code that should be changed, thus creating a defect. They can easily break functionality that was

working, even if that functionality is unrelated to the enhancement they are making.

Testing also takes more time because it is harder to construct reliable and meaningful test cases for messy code, and easier for different test
cases to interfere with each other because of implementation details that “should not matter” based on the purpose of the new test case.

Therefore it is not only productivity that suffers, but solution quality as well.

Another cost to the customer is that the additional time developers spend working with the messy code base is time they cannot spend
designing, building, and testing features that add value to the solution. That means fewer features in the end product.

Slides by Dave Nicolette

Effect of design debt on the defect rate during a project

more

defects per feature

S

less design debt

/

more

Due to some of the issues mentioned on the preceding slide, design debt tends to increase the rate of production of defects. As a solution
grows in size and complexity, it is normal to see an increase in the absolute number of defects over the course of a project. However, the
rate of creation of defect should remain constant. If the rate trends upward, then the development work will end up consisting almost entirely

of defect correction and there will be little time left to develop value-add features.

Slides by Dave Nicolette
Effect of design debt on time available for testing during a project

-

d

Cc

S

)

testing & (%)

new code O

&

—

s ©

defects & Cé)
extra time

. Q

for analysis @)

and coding Q@

>

O

[

=

@)

L

ess design debt - more

This is another way to depict the effect of design debt on the productive time available to the development team. The red areas are meant to
illustrate time that has to be spent “working around” the messy code base. This time would be available for productive work if the design debt
had been paid down incrementally throughout the project.

Slides by Dave Nicolette
Effect of design debt over the life of a product

$$ loss $$

(untenable)

more

N

support cost

effective death of product

planned productive lifetime of product

el N\ oM

less

3
o
o
®

design debt

This slide displays various elements one by one with mouse clicks. At first you will see the chart area and labels.

Support cost is displayed next. The dotted line depicts planned support cost and the solid line depicts actual cost. Messy code tends to have
more defects and the defects are harder to correct for reasons mentioned previously.

Enhancement cost is displayed next. This represents the cost of projects undertaken to enhance the solution after it has been in production.
Another click will display the information about the “effective death of the product.” The point to make here is that long-term strategic
planning and budgeting assume the product will have a certain useful production lifetime. The effect of design debt on the maintainability of
the solution means that lifetime will be shorter than anticipated. This represents needless additional costs that can be extremely high,
depending on the size and criticality of the solution, and on ancillary effects on other aspects of the business plan.

The small matter of whether a development team on a particular project uses TDD rigorously or not can have a “ripple” or “domino” effect
that has implications on a far larger scale. Consider what would happen in an enterprise in which 200 or 300 products all “died” prematurely,
as the slide depicts.

Che aspetto ha il
debito tecnico?

1REGUESTLOALINGSTIrdtegy requestiodingotrdtedgy = requestiLyCLe.getriroCessor)
.getRequestCodingStrategy();

final String path = requestParameters.getPath();
TRequestTarget target = null;

// See whether this request points to a bookmarkable page
1f (requestParameters.getBookmarkablePageClass() != null)

1
¥

target = resolveBookmarkablePage(requestCycle, requestParameters);

// See whether this request points to a rendered page
else if (requestParameters.getComponentPath() != null)

{

// marks whether or not we will be processing this request
int processRequest = 0; // 0 == process, 1 == page expired, 2 == not active page anymore
synchronized (requestCycle.getSession())

{

// we need to check if this request has been flagged as

// process-only-if-path-is-active and if so make sure this
// condition is met

1f (requestParameters.isOnlyProcessIfPathActive())

{

// this request has indeed been flagged as
// process-only-if-path-is-active

Session session = Session.get();

IPageMap pageMap = session.pageMapForName(requestParameters.getPageMapName(), false);
1f (pageMap == null)

{
// requested pagemap no longer exists - 1ignore this
// request
processRequest = 1;

¥

else if (pageMap instanceof AccessStackPageMap)

{

AccessStackPageMap accessStackPageMap = (AccessStackPageMap)pageMap;
1f (accessStackPageMap.getAccessStack().size() > 0)

{

final Access access = (Access)accessStackPageMap.getAccessStack()
.peek();

final int pageld = Integer.parseInt(Strings.firstPathComponent(

| FizzBuzz

1, 2, fizz!, 4, Buzz!, fizz!, 7,
8, fizz!, Buzz!, 11, fizz!, 13,
14, fizzBuzz!, 16, 17, fizzl...

Se e divisibile per 3, di “Fizz!”
Se e divisibile per 5, di “Buzz!”
Se e divisibile per 3 e 5, di “FizzBuzz!”
Altrimenti di il numero.

Non e difficile...

public String say(Integer n) {

1f (1sFizz(n) && 1sBuzz(n)) {
return "FizzBuzz";

¥

1f (isFizz(n)) {
return "Fi1zz";

Iy

1f (1sBuzz(n)) {
return "Buzz";

}
return n.toString();

}

public boolean 1sFizz(Integer n) {
return @ == n % 3;

}

/...

Nuovo requisito

Se e divisibile per 7, di “Bang!”

Nessun problema!

public String say(Integer n) {

1f (isBang(n)) {
return "Bang";
¥

1f (1sFizz(n) && 1sBuzz(n)) {
return "FizzBuzz";

¥
1f (1sFizz(n)) {
return "Fizz";

¥
1f (1sBuzz(n)) {
return "Buzz";

}
return n.toString();

Non e cosi che
intendevo...

Se e divisibile per 3 e per 7, di “FizzBang!”
Se e divisibile per 5 e per 7, di “BuzzBang!”
Se e divisibile per 3,5 e 7, di “FizzBuzzBang!”

Hmmm....

public String say(Integer n) {
1f (isFizz(n) && 1sBuzz(n) && 1isBang(n)) {
return "FizzBuzzBang";
ks

1f (isBang(n) && 1sBuzz(n)) {
return "BuzzBang";

2

Non e piu cosi semplice. Che cosa
succedera al prossimo cambio di
requisiti?

I \I.Jl LLL\IIJ A&\ O N LJUMLL\IIJJ L

return "Fi1zzBuzz";

1f (isFizz(n)) {
return "Fizz";

}
if (isBuzz(n)) {
return "Buzz";

}
return n.toString(Q);

OK. Nessuno ve I'ha
detto finora ma...

Aggiungere IF ¢ il hale.

Al

.
|

-
O 1
[
_i5

P

- R}
¥ 2
I' ';'
.','.16}‘:
B Ak &
- bR

- \ttp://Bierg. wordpress.com/2009/08/05/anti-if-campaighf

x FFI CA CE

S \‘*;_‘* \‘;3 http://www.antiifcampaign.com/

Il principio aperto/chiuso

Software entities
(classes, modules, functions, etc.)
should be open for extension, but

closed for modification

Demo -- come
risolvere il FizzBuzz con
gli oggetti

Quando si deve estendere
la funzionalita del sistema:

® Posso farlo modificando solo la costruzione
ed eventualmente creando nuove classi?

® Se si,bene! o €€€£

® Se no, rifattorizzo fino a quando non posso

Refactoring:

Safely improve the design of existing code

Refactoring:

Safely of existing code

does not add functionality

Refactoring:

Safely improve the design

not rewriting from scratch

Refactoring:

improve the design of existing code
baby steps

tests

Perche fare refactoring?

3 loss $$

(untenable)

more

NG

support cost

effective death of product

——————————————
—-—l—

——————————————
———————————

planned productive lifetime of product

3
o
o
®

design debt

Che cosa rende il
codice difficile da
testare?

Mescolare new e logica

public class Option {

ATest private final Date expiration;

public void shouldRecognizeExpiredOption() {

Date expiration = dateAt(1995, MAY, 28); public Option(Date expiration) {

this.expiration = expiration;

h

Option option = new Option(expiration);

assertTrue(option.isExpired()); public boolean iskxpired() {
1 Date now = new Date();

return expiration.before(now);

Roberto Albertini, Sourcesense

@Test
public void shouldRecognizeExpiredOption() {
Date expiration = dateAt(2008, MAY, 28);

Option option = new Option(expiration);

assertTrue(option.isExpired());

public class Option {

private final Date expiration;

public Option(Date expiration) {
this.expiration = expiration;

}

public boolean isExpired() {

Date now = new Date();
return expiration.before(now);

@Test
public void shouldRecognizeNonExpiredOption() {
Date expiration = dateAt(2020, MAY, 28);

Option option = new Option(expiration);

assertFalse(option.isExpired());

Per quanto tempo
funzionera?

Come posso
testare i casi limite?

Roberto Albertini, Sourcesense

new Date() nhon e programmabile

public boolean isExpired() {
Date now = new Date();
return expiration.before(now);

¥

lo sostituisco con un collaboratore

public boolean isExpired() {
Date now = clock.now();
return expiration.before(now);

¥

Roberto Albertini, Sourcesense

private final Date expiration;

public Option(Date expiration) {
this.expiration = expiration;

¥

devo esplicitare la dipendenza
rendere iniettabile il collaboratore

private final Date expiration;
private final Clock clock;

public Option(Date expiration, Clock clock) {
this.expiration = expiration;
this.clock = clock;

¥

Roberto Albertini, Sourcesense

Il codice di produzione

public interface Clock {

_ , Date now();
public class Option { 1

private final Date expiration;
private final Clock clock;

public Option(Date expiration, Clock clock) {

this.expiration = expiration; public class RealClock implements Clock {
this.clock = clock;
t public Date now() {
return new Date();
public Option(Date expiration) { }
this(expiration, new RealClock());
by hy

Roberto Albertini, Sourcesense

Il codice di test

public class OptionTest {

@Test
public void shouldRecognizeExpiredTask() {
Clock clockAt2009028 =
new ProgrammableClock(
dateAt(2009, MAY, 28));

Date expiration = dateAt(2009, MAY, 27);

Option option =
new Option(expiration, clockAt20090528);

assertTrue(option.isExpired());

public interface Clock {
Date now();

}

public class ProgrammableClock
implements Clock {
private Date now;

public ProgrammableClock(Date date) {
this.now = date;

}

public Date now() {
return now;

}

Roberto Albertini, Sourcesense

Unit Testing a Class® @

Stimulus

Asserts

Misko Hevery GOUSIQ

Unit Testing a Class” @

.

Test

Driver

* _ /
4 N
Other
Object Lifetime and Calling Class
o——— Object Instantiated \ /
—p Object Passed In
--------- »Global Object

Misko Hevery (GOOGle

Unit Testing a Class”® @

.

4 N (b
FICIS I Other
System Class [A
L) _ b..J CPU
S Intensive
edam y,
Test
Driver N
Destructive
operation
J
~)
Object Lifetime and Calling Class Ce):cgs
e——— Object Instantiated \ o \ Y
- Object Passed In
--------- »Global Object

Misko Hevery GO« >81C

Unit Testing a Class® @

Friendly

Test
Driver

Friendly

-
‘e
4

Object Lifetime and Calling Friendly

o——— Object Instantiated
- Object Passed In

""""" »Global Object
Misko Hevery Goc)SIC

Unit Testing a Class® @

Friendly

QM P iEllel

Friendly

Object Lifetime and Calling
o——— ODbject Instantiated

—p Object Passed In

--------- »Global Object
Misko Hevery GOUS[Q

Two piles

Pile of Objects

* Business logic

* This is why you're writing
code

Pile of New Keywords

* Provider<T> objects

* Factories

* Builders

* This is how you get the
code you write to work
together

new

new
new
new

new new new

Nnew new
new
new

Misko Hevery Google

Two piles

Pile of Objects
* Responsibility is business
logic, domain abstractions

Pile of New Keywords
* Responsibllity is to build
object graphs

new new
new

g ne@

new

new new
graph

Misko Hevery O Q[C
-

La struttura di un main

public static void main(String[] args) throws Exception {
// Creation Phase
Server server = new ServerFactory(args).createServer();

// Run Phase
server.start();

Esercizio:
Alla cassa del supermercato

¢ Compute the Ttem Unit Special
total price Price Price
® Scan items one "A _____ !;é _______ E_S_;c_);_if_sé
at a time B 30 2 for 45
C 20
® |n any order 0 15

http://codekata.pragprog.com/

Supermarket checkout:
Drimo test

@Test
public void priceForAis50() {
Checkout checkout = new Checkout(...);

assertEquals(®, checkout.total());
checkout.scan("A");

assertEquals(50, checkout.total());
checkout.scan("A");

assertbEquals(100, checkout.total());

Supermarket checkout:
secondo test

@Test
public void priceForBIs30() {
Checkout checkout = new Checkout(...);

checkout.scan("B");
checkout.scan("B");
assertEquals(60, checkout.total());

Supermarket checkout:
terzo test

@Test
public void discountForThreeA() {
Checkout checkout = new Checkout(...);
checkout.scan("A");
checkout.scan("A");
checkout.scan("A");
assertbEquals(130, checkout.total());

Credits

The Technical Debt metaphor was coined by Ward Cunningham
The Open-Closed Principle was coined by Bertrand Meyer

Technical debt slides by Dave Nicolette
http://www.infog.com/presentations/ TDD-Managers-Nicolette-Scotland

Technical debt example code courtesy of the Apache Wicket framework
Anti-IF guy #| by Piergiorgio Grossi - http://pierg.wordpress.com/
Anti-IF guy #2 is Francesco Cirillo - http://www.metodiagili.it/

The FizzBuzz example was inspired by a presentation by Giordano Scalzo
http://www.slideshare.net/giordano/xpug-coding-dojo-katayahtzee-in-ocp-way

Hard-to-test code slides by Roberto Albertini (Sourcesense) and Misko Hevery (Google) http://
misko.hevery.com/presentations/

The Supermarket Checkout kata is by Dave Thomas
http://codekata.pragprog.com

