The Invariant Game

Matteo Vaccari
m.vaccari@sourcesense.com

XP Day Eindhoven, 20 November 2008

Why?

Technical excellence enhances agility!

What?

Robert W. Floyd, Assigning Meanings to Programs, 1967 C.A.R. Hoare, An Axiomatic Basis for Computer Programming, 1969
E.W. Dijkstra, A Discipline of Programming, 1976

Right here in Eindhoven!

Roland Backhouse, Program Construction, 2003

The case of the missing squares

The case of the upside-down tumblers

The case of the heavy armchair

 ?

The case of the heavy armchair

Hoare triples

$$
\{P\} S\{Q\}
$$

if precondition P is true, then program S will terminate, and then postcondition Q will be true.

$$
\begin{array}{lcl}
\{\text { true }\} & x:=42 & \{x=42\} \\
\{x=3\} & x:=x+1 & \{x=4\} \\
\{x>0\} & x:=x+1 & \{x>1\}
\end{array}
$$

Triples as program specs

"Find program S that establishes Q starting from P "

$$
\{P\} S\{Q\}
$$

Example: spec for "the square root of x "

$$
\{x \geq 0\} S\left\{\left|y^{2}-x\right|<\epsilon\right\}
$$

(Informally: x is given; the program should assign to y)

Loops

Solving problems with loops

```
{ P } # precondition
R
while B
    S
end
{ Q } # postcondition
```

How to find R, B, S ?

Strategy for solving loops (i)

Find predicate inv such that:
\{ P \}
\{ inv \}
while B
S
end
\{ Q \}
\# i. it can be established initially

Strategy for solving loops (ii)

Find predicate inv such that:
\{ P \}

R	\#	i.
it can be established		
\{ inv \}	$\#$	initially
while B	$\#$	ii.
it's preserved by		
\{ B \&\& inv \} S \{ inv \} \#	the loop body	

end
\{ Q \}

Strategy for solving loops (iii)

Find predicate inv such that:
\{ P \}
R \# i. it can be established
\{ inv \}
while B
\{ B \&\& inv \} S \{ inv \} \# the loop body
end
\{ ! B \&\& inv \}
\# iii. at loop termination, it
\{ Q \}
\# implies the postcondition

Example: sum the elements of an array

```
var a: array [0,N) of integer
{ true } S {s=sum[0,N ) }
```

Where

$$
\operatorname{sum}[0, N)=(\Sigma: 0 \leq i<N: a[i])
$$

What is the idea?

Spec: $\{\operatorname{true}\} S\{s=\operatorname{sum}[0, N)\}$
\square^{0} summed

What is the idea?

Spec: $\{$ true $\} S\{s=\operatorname{sum}[0, N)\}$

Introduce a new variable k

What is the idea?

Introduce a new variable k

Invariant: $s=\operatorname{sum}[0, k)$

Does the invariant imply the postcondition? Invariant: $s=\operatorname{sum}[0, k)$

summed	not summed

Does the invariant imply the postcondition? Invariant: $s=\operatorname{sum}[0, k)$

summed	not summed

Yes! when $k=N$,

$$
s=\operatorname{sum}[0, k)=\operatorname{sum}[0, N)
$$

Does the invariant imply the postcondition? Invariant: $s=\operatorname{sum}[0, k)$

summed	not summed

Yes! when $k=N$,

$$
s=\operatorname{sum}[0, k)=\operatorname{sum}[0, N)
$$

The shape of the loop:

$$
\begin{aligned}
& \text { while } k \neq \mathrm{N} \\
& \qquad \mathrm{~S} \\
& \mathrm{k}:=\mathrm{k}+1 \\
& \text { end }
\end{aligned}
$$

Can we establish the invariant initially?

Invariant: $s=\operatorname{sum}[0, k)$

Can we establish the invariant initially?

Invariant: $s=\operatorname{sum}[0, k)$

Yes! when $k=0$,

$$
s=\operatorname{sum}[0,0)=0
$$

Can we establish the invariant initially?

Invariant: $s=\operatorname{sum}[0, k)$

Yes! when $k=0$,

$$
s=\operatorname{sum}[0,0)=0
$$

The initial statement is

$$
s:=0 ; k:=0
$$

Can we preserve the invariant?

Invariant: $s=\operatorname{sum}[0, k)$

summed	not summed

$$
s:=0 ; k:=0
$$

while $k \neq N$

$$
\begin{aligned}
& \mathrm{s}:=\mathrm{E} \\
& \mathrm{k}:=\mathrm{k}+1
\end{aligned}
$$

end

Can we preserve the invariant?

Invariant: $s=\operatorname{sum}[0, k)$

summed	k not summed

$$
s:=0 ; k:=0
$$

while $k \neq N$

$$
s:=E
$$

$$
k:=k+1
$$

end

Observe:
$\operatorname{sum}[0, k+1)=\operatorname{sum}[0, k)+a[k]$

Can we preserve the invariant?

Invariant: $s=\operatorname{sum}[0, k)$

summed	not summed

$s:=0 ; k:=0$
while $k \neq N$
$\quad s:=E$
$\quad k:=k+1$
end

Yes! by choosing $E=s+a[k]$

$$
\begin{aligned}
& \mathrm{s}:=0 ; \mathrm{k}:=0 \\
& \text { while } \mathrm{k} \neq \mathrm{N} \\
& \qquad \mathrm{~s}:=\mathrm{s}+\mathrm{a}[\mathrm{k}] \\
& \quad \mathrm{k}:=\mathrm{k}+1 \\
& \text { end }
\end{aligned}
$$

Observe:
$\operatorname{sum}[0, k+1)=\operatorname{sum}[0, k)+a[k]$

So, the standard solution is correct :-)

```
\{ true \}
\(s:=0 ; k:=0\)
\(\{\operatorname{sum}[0,0)=0\}\)
while \(k \neq N\)
    \(\{s=\operatorname{sum}[0, k) \wedge k \neq N\}\)
    \(\mathrm{s}:=\mathrm{s}+\mathrm{a}[\mathrm{k}]\)
    \(\mathrm{k}:=\mathrm{k}+1\)
    \(\{\operatorname{sum}[0, k+1)=\operatorname{sum}[0, k)+a[k]\}\)
    \(\{s=\operatorname{sum}[0, k)\}\)
end
\(\{k=N \wedge s=\operatorname{sum}[0, k)\}\)
\(\{s=\operatorname{sum}[0, N)\}\)
```


Warmup 0: assign 0 to all elements of an array

Example: given [1, 2, 3, 4], return [0, 0, 0, 0]
Spec as a pic?
Spec as a formula?
Invariant?
Implementation?

Warmup 1: make a random permutation of an array

Example: given [1, 2, 3, 4], return (for instance) [2, 4, 3, 1] Spec as a pic?
Spec as a formula?
Invariant?
Implementation?

Warmup 2: Separate odd and even numbers

Rearrange an array in place so that the even values are to the left and the odd values to the right.
Examples:

- input [], output []
- input [1,2,3,4,5], output [2,4,1,3,5]

Spec as a pic?
Spec as a formula?
Invariant?
Implementation?

Let's play now!

Rules of the game:

- Split in teams

Let's play now!

Rules of the game:

- Split in teams
- For every problem, you must produce the spec (pic and formula), the invariant (pic and formula), and the implementation

Let's play now!

Rules of the game:

- Split in teams
- For every problem, you must produce the spec (pic and formula), the invariant (pic and formula), and the implementation
- Every problem solved earns you points! (o:

Let's play now!

Rules of the game:

- Split in teams
- For every problem, you must produce the spec (pic and formula), the invariant (pic and formula), and the implementation
- Every problem solved earns you points! (o:
- You may ask for help, but that will cost you points!)o:

Let's play now!

Rules of the game:

- Split in teams
- For every problem, you must produce the spec (pic and formula), the invariant (pic and formula), and the implementation
- Every problem solved earns you points! (o:
- You may ask for help, but that will cost you points!)o:
- You must convince your opponents that your solution is valid

Let's play now!

Rules of the game:

- Split in teams
- For every problem, you must produce the spec (pic and formula), the invariant (pic and formula), and the implementation
- Every problem solved earns you points! (o:
- You may ask for help, but that will cost you points!)o:
- You must convince your opponents that your solution is valid
- Team with largest score wins!

For more information

Two books by Roland Backhouse:

- Algorithmic Problem Solving
- Program Construction

Thank you. Any questions?

(cc) (i) (8) (O)

(cc) Matteo Vaccari. Published in Italy.

Attribution - Non commercial - Share alike 2.5

