
The Invariant Game

Matteo Vaccari
m.vaccari@sourcesense.com

XP Day Eindhoven, 20 November 2008

Why?

Technical excellence enhances agility!

What?

Robert W. Floyd, Assigning Meanings to Programs, 1967
C.A.R. Hoare, An Axiomatic Basis for Computer
Programming, 1969
E.W. Dijkstra, A Discipline of Programming, 1976

...
Right here in Eindhoven!

...

Roland Backhouse, Program Construction, 2003

The case of the missing squares

The case of the upside-down tumblers

The case of the heavy armchair

?

90°

from R. Backhouse, Program Construction

The case of the heavy armchair

90°

Hoare triples

{ P } S { Q }

if precondition P is true,
then program S will terminate,
and then postcondition Q will be true.

{ true } x := 42 { x = 42 }

{ x = 3 } x := x+ 1 { x = 4 }

{ x > 0 } x := x+ 1 { x > 1 }

Triples as program specs

“Find program S that establishes Q starting from P”

{ P } S { Q }

Example: spec for “the square root of x”

{ x ≥ 0 } S { |y2 − x| < ε }

(Informally: x is given; the program should assign to y)

Loops

R # initialization
while B # guard
S # body

end

Solving problems with loops

{ P } # precondition
R

while B
S

end
{ Q } # postcondition

How to find R, B, S ?

Strategy for solving loops (i)

Find predicate inv such that:

{ P }
R # i. it can be established
{ inv } # initially
while B

S
end
{ Q }

Strategy for solving loops (ii)

Find predicate inv such that:

{ P }
R # i. it can be established
{ inv } # initially
while B # ii. it’s preserved by

{ B && inv } S { inv } # the loop body
end
{ Q }

Strategy for solving loops (iii)

Find predicate inv such that:

{ P }
R # i. it can be established
{ inv } # initially
while B # ii. it’s preserved by

{ B && inv } S { inv } # the loop body
end
{ !B && inv } # iii. at loop termination, it
{ Q } # implies the postcondition

Example: sum the elements of an array

var a : array [0,N) of integer

{ true } S { s = sum[0,N) }

Where

sum[0,N) = (Σ : 0 ≤ i < N : a[i])

What is the idea?

Spec: { true } S { s = sum[0,N) }

0 N
summed

Introduce a new variable k

Invariant: s = sum[0, k)

0 k N
summed not summed

What is the idea?

Spec: { true } S { s = sum[0,N) }

0 N
summed

Introduce a new variable k

Invariant: s = sum[0, k)

0 k N
summed not summed

What is the idea?

Spec: { true } S { s = sum[0,N) }

0 N
summed

Introduce a new variable k

Invariant: s = sum[0, k)

0 k N
summed not summed

Does the invariant imply the postcondition?
Invariant: s = sum[0, k)

0 k N
summed not summed

Yes! when k = N,

s = sum[0, k) = sum[0,N)

The shape of the loop:

while k 6= N

S

k := k+ 1

end

Does the invariant imply the postcondition?
Invariant: s = sum[0, k)

0 k N
summed not summed

Yes! when k = N,

s = sum[0, k) = sum[0,N)

The shape of the loop:

while k 6= N

S

k := k+ 1

end

Does the invariant imply the postcondition?
Invariant: s = sum[0, k)

0 k N
summed not summed

Yes! when k = N,

s = sum[0, k) = sum[0,N)

The shape of the loop:

while k 6= N

S

k := k+ 1

end

Can we establish the invariant initially?
Invariant: s = sum[0, k)

0 k N
summed not summed

Yes! when k = 0,

s = sum[0, 0) = 0

The initial statement is

s := 0;k := 0

Can we establish the invariant initially?
Invariant: s = sum[0, k)

0 k N
summed not summed

Yes! when k = 0,

s = sum[0, 0) = 0

The initial statement is

s := 0;k := 0

Can we establish the invariant initially?
Invariant: s = sum[0, k)

0 k N
summed not summed

Yes! when k = 0,

s = sum[0, 0) = 0

The initial statement is

s := 0;k := 0

Can we preserve the invariant?
Invariant: s = sum[0, k)

0 k N
summed not summed

s := 0;k := 0

while k 6= N

s := E

k := k+ 1

end

Observe:
sum[0, k+ 1) = sum[0, k)+a[k]

Yes! by choosing E = s+ a[k]

s := 0;k := 0

while k 6= N

s := s+ a[k]

k := k+ 1

end

Can we preserve the invariant?
Invariant: s = sum[0, k)

0 k N
summed not summed

s := 0;k := 0

while k 6= N

s := E

k := k+ 1

end

Observe:
sum[0, k+ 1) = sum[0, k)+a[k]

Yes! by choosing E = s+ a[k]

s := 0;k := 0

while k 6= N

s := s+ a[k]

k := k+ 1

end

Can we preserve the invariant?
Invariant: s = sum[0, k)

0 k N
summed not summed

s := 0;k := 0

while k 6= N

s := E

k := k+ 1

end

Observe:
sum[0, k+ 1) = sum[0, k)+a[k]

Yes! by choosing E = s+ a[k]

s := 0;k := 0

while k 6= N

s := s+ a[k]

k := k+ 1

end

So, the standard solution is correct :-)

{ true }

s := 0;k := 0

{ sum[0, 0) = 0 }

while k 6= N

{ s = sum[0, k) ∧ k 6= N }

s := s+ a[k]

k := k+ 1

{ sum[0, k+ 1) = sum[0, k) + a[k] }

{ s = sum[0, k) }

end

{ k = N∧ s = sum[0, k) }

{ s = sum[0,N) }

Warmup 0: assign 0 to all elements of an array

Example: given [1, 2, 3, 4], return [0, 0, 0, 0]

Spec as a pic?
Spec as a formula?
Invariant?
Implementation?

Warmup 1: make a random permutation of an array

Example: given [1, 2, 3, 4], return (for instance) [2, 4, 3, 1]

Spec as a pic?
Spec as a formula?
Invariant?
Implementation?

Warmup 2: Separate odd and even numbers

Rearrange an array in place so that the even values are to the
left and the odd values to the right.
Examples:

� input [], output []

� input [1,2,3,4,5], output [2,4,1,3,5]

Spec as a pic?
Spec as a formula?
Invariant?
Implementation?

Let’s play now!

Rules of the game:

� Split in teams

� For every problem, you must produce the spec (pic and
formula), the invariant (pic and formula), and the
implementation

� Every problem solved earns you points! (o:

� You may ask for help, but that will cost you points!)o:

� You must convince your opponents that your solution is
valid

� Team with largest score wins!

Let’s play now!

Rules of the game:

� Split in teams

� For every problem, you must produce the spec (pic and
formula), the invariant (pic and formula), and the
implementation

� Every problem solved earns you points! (o:

� You may ask for help, but that will cost you points!)o:

� You must convince your opponents that your solution is
valid

� Team with largest score wins!

Let’s play now!

Rules of the game:

� Split in teams

� For every problem, you must produce the spec (pic and
formula), the invariant (pic and formula), and the
implementation

� Every problem solved earns you points! (o:

� You may ask for help, but that will cost you points!)o:

� You must convince your opponents that your solution is
valid

� Team with largest score wins!

Let’s play now!

Rules of the game:

� Split in teams

� For every problem, you must produce the spec (pic and
formula), the invariant (pic and formula), and the
implementation

� Every problem solved earns you points! (o:

� You may ask for help, but that will cost you points!)o:

� You must convince your opponents that your solution is
valid

� Team with largest score wins!

Let’s play now!

Rules of the game:

� Split in teams

� For every problem, you must produce the spec (pic and
formula), the invariant (pic and formula), and the
implementation

� Every problem solved earns you points! (o:

� You may ask for help, but that will cost you points!)o:

� You must convince your opponents that your solution is
valid

� Team with largest score wins!

Let’s play now!

Rules of the game:

� Split in teams

� For every problem, you must produce the spec (pic and
formula), the invariant (pic and formula), and the
implementation

� Every problem solved earns you points! (o:

� You may ask for help, but that will cost you points!)o:

� You must convince your opponents that your solution is
valid

� Team with largest score wins!

For more information

Two books by Roland Backhouse:

� Algorithmic Problem Solving

� Program Construction

Thank you. Any questions?

(cc) Matteo Vaccari. Published in Italy.
Attribution – Non commercial – Share alike 2.5

