The Invariant Game

Matteo Vaccari
m.vaccari@sourcesense.com

M sourcesense
o~o

XP Day Eindhoven, 20 November 2008

Why?

Technical excellence enhances agility!

What?

Robert W. Floyd, Assigning Meanings to Programs, 1967
C.A.R. Hoare, An Aziomatic Basis for Computer
Programmang, 1969

E.W. Dijkstra, A Discipline of Programming, 1976

Right here in Eindhoven!

Roland Backhouse, Program Construction, 2003

The case of the missing squares

The case of the upside-down tumblers

SV YT YT VY A YT

The case of the heavy armchair

?
L L L L L L L L
* L L 9 L
® L L e L

from R. Backhouse, Program Construction

The case of the heavy armchair

Hoare triples

{P}sS{Q}

if precondition P is true,
then program S will terminate,
and then postcondition Q will be true.

{true} x:=42 {x=42}
{x=3} x=x+1 {x=4}
{x>0} x=x+1 {x>1}

Triples as program specs

“Find program S that establishes Q starting from P”
{P}s{Q}

Example: spec for “the square root of x”
{x>0}S{ly*~x<e}

(Informally: x is given; the program should assign to y)

Loops

R # initialization
while B # guard

S # body
end

Solving problems with loops

{P} # precondition
R
while B
S
end
{Q1} # postcondition

How to find R, B, S ?

Strategy for solving loops (i)

Find predicate inv such that:

{P}
R # i. it can be established
{ inv } # initially
while B
S
end

{Q}

Strategy for solving loops (ii)

Find predicate inv such that:

{P}
R
{ inv }
while B
{B &% inv } S { inv }
end

{Q}

#
#
#
#

ii.

. it can be established

initially
it’s preserved by
the loop body

Strategy for solving loops (iii)

Find predicate inv such that:

{P}
R # 1. it can be established
{ inv } # initially
while B # 1ii. it’s preserved by
{B & inv } S { inv } # the loop body
end
{ !B && inv } # iii. at loop termination, it

{Q} # implies the postcondition

Example: sum the elements of an array

var a: array [0, N) of integer
{true } S{s =sum[0,N) }

Where

sum[0,N) = (Z£:0 <1< N:ali])

What is the idea?

Spec: {true } S{s =sum[0,N) }

0 N
’ summed ‘

What is the idea?

Spec: {true } S{s =sum[0,N) }

0 N
’ summed ‘

Introduce a new variable k

What is the idea?

Spec: {true } S{s =sum[0,N) }

0 N
’ summed ‘

Introduce a new variable k

Invariant: s = sum|0, k)

0 k N
summed \ not summed ‘

Does the invariant imply the postcondition?

Invariant: s = sum|0, k)

0 k N
summed \ not summed ‘

Does the invariant imply the postcondition?

Invariant: s = sum|0, k)

0 k N
summed \ not summed ‘

Yes! when k = N,

s = sum|0, k) = sum[0,N)

Does the invariant imply the postcondition?

Invariant: s = sum|0, k)

0 k N
summed \ not summed ‘

Yes! when k = N,

s = sum|0, k) = sum[0,N)

The shape of the loop:

while k # N
S
k:=k+1

end

Can we establish the invariant initially?

Invariant: s = sum[0, k)

0 k N
summed ‘ not summed ‘

Can we establish the invariant initially?

Invariant: s = sum[0, k)

0 k N
summed ‘ not summed ‘

Yes! when k = 0,

s = sum[0,0) =0

Can we establish the invariant initially?

Invariant: s = sum[0, k)

0 k N
summed ‘ not summed ‘

Yes! when k = 0,

s = sum[0,0) =0

The initial statement is

s =0k:=0

Can we preserve the invariant?

Invariant: s = sum[0, k)

0 k N
summed ‘ not summed ‘

s =0;k:=0
while k # N
s:=E
ki=k+1

end

Can we preserve the invariant?

Invariant: s = sum[0, k)

0 k N
summed ‘ not summed ‘
s =0;k:=0
while k # N
s:=E
ki=k+1
end
Observe:

sum[0,k+ 1) = suml[0, k) + a[k]

Can we preserve the invariant?

Invariant: s = sum[0, k)

0 k N

summed ‘ not summed ‘

s:=0k:=0 Yes! by choosing E = s + a[k]
s:=E while k # N
ki=k+1 s:=s+alk]

end ki=k+1

end
Observe:

sum[0,k+ 1) = suml[0, k) + a[k]

So, the standard solution is correct :-)

{true}

s:=0;k:=0

{sum[0,0) =0}

while k # N
{s=suml[0,k) Ak #N}
s = s+ alk]
k:=k+1
{sum[0,k + 1) = sum[0, k) + a[k] }
{s=suml0,k) }

end

{k=NAs=sum[0,k)}

{s =sum[0,N) }

Warmup 0: assign 0 to all elements of an array

Example: given [1,2,3,4], return [0, 0,0, 0]
Spec as a pic?

Spec as a formula?

Invariant?

Implementation?

Warmup 1: make a random permutation of an array

Example: given [1,2,3,4], return (for instance) [2,4,3,1]
Spec as a pic?

Spec as a formula?

Invariant?

Implementation?

Warmup 2: Separate odd and even numbers

Rearrange an array in place so that the even values are to the
left and the odd values to the right.
Examples:

e input [], output ||
e input [1,2,3,4,5], output [2,4,1,3,5]

Spec as a pic?
Spec as a formula?
Invariant?
Implementation?

Let’s play now!

Rules of the game:

e Split in teams

Let’s play now!

Rules of the game:
e Split in teams

e For every problem, you must produce the spec (pic and
formula), the invariant (pic and formula), and the
implementation

Let’s play now!

Rules of the game:
e Split in teams

e For every problem, you must produce the spec (pic and
formula), the invariant (pic and formula), and the
implementation

e Every problem solved earns you points! (o:

Let’s play now!

Rules of the game:
e Split in teams

e For every problem, you must produce the spec (pic and
formula), the invariant (pic and formula), and the
implementation

e Every problem solved earns you points! (o:

¢ You may ask for help, but that will cost you points!)o:

Let’s play now!

Rules of the game:

Split in teams

For every problem, you must produce the spec (pic and
formula), the invariant (pic and formula), and the
implementation

Every problem solved earns you points! (o:
You may ask for help, but that will cost you points!)o:

You must convince your opponents that your solution is
valid

Let’s play now!

Rules of the game:

Split in teams

For every problem, you must produce the spec (pic and
formula), the invariant (pic and formula), and the
implementation

Every problem solved earns you points! (o:
You may ask for help, but that will cost you points!)o:

You must convince your opponents that your solution is
valid

Team with largest score wins!

For more information

Two books by Roland Backhouse:
e Algorithmic Problem Solving

e Program Construction

Thank you. Any questions?

(cc) Matteo Vaccari. Published in Italy.
Attribution — Non commercial — Share alike 2.5

