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Why?

Technical excellence enhances agility!



What?

Robert W. Floyd, Assigning Meanings to Programs, 1967
C.A.R. Hoare, An Axiomatic Basis for Computer
Programming, 1969
E.W. Dijkstra, A Discipline of Programming, 1976

...
Right here in Eindhoven!

...

Roland Backhouse, Program Construction, 2003



The case of the missing squares



The case of the upside-down tumblers



The case of the heavy armchair

?

90°

from R. Backhouse, Program Construction
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Hoare triples

{ P } S { Q }

if precondition P is true,
then program S will terminate,
and then postcondition Q will be true.

{ true } x := 42 { x = 42 }

{ x = 3 } x := x+ 1 { x = 4 }

{ x > 0 } x := x+ 1 { x > 1 }



Triples as program specs

“Find program S that establishes Q starting from P”

{ P } S { Q }

Example: spec for “the square root of x”

{ x ≥ 0 } S { |y2 − x| < ε }

(Informally: x is given; the program should assign to y)



Loops

R # initialization
while B # guard
S # body

end



Solving problems with loops

{ P } # precondition
R

while B
S

end
{ Q } # postcondition

How to find R, B, S ?



Strategy for solving loops (i)

Find predicate inv such that:

{ P }
R # i. it can be established
{ inv } # initially
while B

S
end
{ Q }



Strategy for solving loops (ii)

Find predicate inv such that:

{ P }
R # i. it can be established
{ inv } # initially
while B # ii. it’s preserved by

{ B && inv } S { inv } # the loop body
end
{ Q }



Strategy for solving loops (iii)

Find predicate inv such that:

{ P }
R # i. it can be established
{ inv } # initially
while B # ii. it’s preserved by

{ B && inv } S { inv } # the loop body
end
{ !B && inv } # iii. at loop termination, it
{ Q } # implies the postcondition



Example: sum the elements of an array

var a : array [0,N) of integer

{ true } S { s = sum[0,N) }

Where

sum[0,N) = (Σ : 0 ≤ i < N : a[i])



What is the idea?

Spec: { true } S { s = sum[0,N) }

0 N
summed

Introduce a new variable k

Invariant: s = sum[0, k)

0 k N
summed not summed
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Does the invariant imply the postcondition?
Invariant: s = sum[0, k)

0 k N
summed not summed

Yes! when k = N,

s = sum[0, k) = sum[0,N)

The shape of the loop:

while k 6= N

S

k := k+ 1

end
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Can we establish the invariant initially?
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Can we preserve the invariant?
Invariant: s = sum[0, k)

0 k N
summed not summed

s := 0;k := 0

while k 6= N

s := E

k := k+ 1

end

Observe:
sum[0, k+ 1) = sum[0, k)+a[k]

Yes! by choosing E = s+ a[k]

s := 0;k := 0
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So, the standard solution is correct :-)

{ true }

s := 0;k := 0

{ sum[0, 0) = 0 }

while k 6= N

{ s = sum[0, k) ∧ k 6= N }

s := s+ a[k]

k := k+ 1

{ sum[0, k+ 1) = sum[0, k) + a[k] }

{ s = sum[0, k) }

end

{ k = N∧ s = sum[0, k) }

{ s = sum[0,N) }



Warmup 0: assign 0 to all elements of an array

Example: given [1, 2, 3, 4], return [0, 0, 0, 0]

Spec as a pic?
Spec as a formula?
Invariant?
Implementation?



Warmup 1: make a random permutation of an array

Example: given [1, 2, 3, 4], return (for instance) [2, 4, 3, 1]

Spec as a pic?
Spec as a formula?
Invariant?
Implementation?



Warmup 2: Separate odd and even numbers

Rearrange an array in place so that the even values are to the
left and the odd values to the right.
Examples:

� input [], output []

� input [1,2,3,4,5], output [2,4,1,3,5]

Spec as a pic?
Spec as a formula?
Invariant?
Implementation?



Let’s play now!

Rules of the game:

� Split in teams

� For every problem, you must produce the spec (pic and
formula), the invariant (pic and formula), and the
implementation

� Every problem solved earns you points! (o:

� You may ask for help, but that will cost you points! )o:

� You must convince your opponents that your solution is
valid

� Team with largest score wins!
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For more information

Two books by Roland Backhouse:

� Algorithmic Problem Solving

� Program Construction



Thank you. Any questions?

(cc) Matteo Vaccari. Published in Italy.
Attribution – Non commercial – Share alike 2.5


